Question 1 - Lycée Don Bosco Marseille

publicité
BEP ET
Leçon 22 Moteur à courant continu
Page 1/10
1. FONCTIONNEMENT
Stator : il est aussi appelé inducteur ou excitateur et c’est lui qui crée le champ
magnétique.
Rotor : il est aussi appelé induit. Lorsqu’il est traversé par un courant et qu’il reçoit le
champ magnétique du stator, il se met en rotation.
Collecteur et couronne porte-balais : cet ensemble permet de faire passer un courant
continu d’une partie fixe (le réseau d’alimentation) à une partie mobile (l’induit).
Arbre et les roulements : cet ensemble supporte l’induit et lui permet de tourner dans
l’espace englobé par l’inducteur.
Ventilation : elle est toujours nécessaire pour évacuer la production de chaleur émise
par le moteur.
L’usage des moteurs à courant continu est très fréquent car :
Suivant la taille du moteur, son inducteur peut être un électroaimant ou un aimant
permanent. Cette dernière solution évite l’alimentation de l’inducteur puisqu’il n’y a
pas de champ à créer.
BEP ET
Leçon 22 Moteur à courant continu
Page 2/10
Les moteurs à courant continu sont réversibles. Si on les alimente en électricité ils
produisent de l’énergie mécanique. Si on les fait tourner ils produisent de l’énergie
électrique.
2. RACCORDEMENT D’UN MOTEUR A COURANT CONTINU
2.1 Moteur à excitation séparée
I
Ie
E
Inducteur
Induit
R.Ie
U
R
r.I
r
Symbole
Propriété : ce moteur permet de régler la valeur de l’excitation (du flux magnétique)
indépendamment de l’alimentation de l’induit. Les inconvénients sont qu’il y a nécessité
d’avoir deux sources d’alimentation et que si on perd l’alimentation de l’inducteur (de
l’excitation), il y a emballement du moteur (vitesse dépassant les limites admissibles du
moteur).
2.2 Moteur à inducteur en parallèle
I + Ie
I
Ie
E
Inducteur
Induit
U
R.Ie
R
r
r.I
Symbole
Propriété : ce moteur ne peut pas s’emballer mais il nécessite de construire l’inducteur
de façon à pouvoir l’alimenter sous la même différence de potentiel que l’induit. Ce moteur
peut fonctionner à vide (sans charge) et convient parfaitement aux machines-outils même
s’il est de plus en plus remplacé par le moteur à courant alternatif de type asynchrone.
BEP ET
Leçon 22 Moteur à courant continu
Page 3/10
2.3 Moteur à inducteur en série
I
E
Induit
r
r.I
R
R.I
U
Inducteur
Symbole
Propriété : ce moteur est idéal pour la traction et le levage car il peut démarrer avec une
charge très élevée. Par contre il ne peut pas démarrer à vide sinon il s’emballe.
3. MOTEUR À COURANT CONTINU À EXCITATION SEPARÉE
3.1 Expression de la force électromotrice
Au démarrage :
Ie
I
Rh
E
Ue
R.Ie
U
R
r
r.I
Au démarrage l’induit n’étant pas en rotation la loi d’ohm U = E – (r.I) devient U = r.Id
donc Id = U
r.
Or la résistance de l’induit étant faible, le courant de démarrage sera trop grand. C’est
pour cela que l’on branche en série un rhéostat de démarrage qui sera calibré au
maximum au démarrage puis baissé jusqu’à disparaître (Rh = 0).
De la même manière si on veut faire varier l’excitation c'est-à-dire le flux magnétique donc
le courant Ie, il faut placer en série dans le circuit de l’inducteur un rhéostat.
BEP ET
Leçon 22 Moteur à courant continu
En fonctionnement :
Ie
Page 4/10
I
E
Ue
R.Ie
U
R
r
r.I
E = U - (r
I)
Mais la force électromotrice d’un moteur est aussi identique à celle d’un générateur. Elle
dépend donc :
Du flux magnétique «
».
De la vitesse de rotation « n ».
Du nombre de conducteurs actifs « N » et d’un coefficient de foisonnement. C’est 2
éléments seront conjugués et remplacé par une constante « k ».
E=k
Avec
:
n
le flux magnétique en Weber (Wb)
n:
la vitesse ou fréquence de rotation en tours par seconde (tr.s-1)
k:
constante.
Transformation :
n=E
(k
)
=E
(k
n)
3.2 Expression de la fréquence de rotation
Si on conjugue les deux équations précédentes [n = E
(k
) et E = U - (r
I)], on
trouve l’expression de la fréquence de rotation à partir de tous les éléments du circuit.
n = [U - (r
I)]
(k
)
BEP ET
Leçon 22 Moteur à courant continu
Page 5/10
Cette équation nous permet de voir comment va réagir la vitesse de rotation en fonction
des éléments que nous pouvons faire varier :
C'est-à-dire la tension de l’induit U ou le flux magnétique inducteur
. Pour faire varier le
flux magnétique il faut faire varier l’intensité du courant d’excitation Ie.
1er cas
2ème cas
3 ème cas
4ème cas
U (en V)
Augmente
Diminue
Constante
Constante
Ie (en A)
Constante
Constante
Augmente
Diminue
n (en tr.s-1)
Augmente
Diminue
Diminue
Augmente
Remarque : cette équation nous montre que si on coupe accidentellement le circuit de
l’inducteur alors Ie va devenir égale à zéro donc le flux magnétique aussi et la vitesse de
rotation va tendre vers l’infini.
De la même manière cette équation nous montre que si on veut inverser le sens de
rotation il suffit d’inverser soit le circuit d’excitation soit le circuit de l’induit. Attention cette
opération doit obligatoirement se faire moteur hors tension et arrêté.
4. COUPLE ELECTROMAGNETIQUE ET COUPLE UTILE
Il est nécessaire de connaître le couple d’une machine car pour démarrer cette dernière à
besoin d’avoir son propre couple supérieur à celui de la charge qui lui est accouplée.
Le moment d’un couple se calcul par le rapport de la puissance sur la vitesse de rotation
angulaire.
T=P
Avec T :
P:
:
moment du couple en Newton mètre (N.m).
puissance en Watt (W).
vitesse de rotation angulaire en radian par seconde (rad.s-1).
Transformation :
P=T
=P
T
Remarque : la vitesse de rotation angulaire se calcule à partir de la vitesse de rotation
« n » par la formule :
=2
n.
BEP ET
Leçon 22 Moteur à courant continu
Page 6/10
La formule du couple est comme pour les puissances à adapter en fonction de l’endroit où
nous nous situons dans la machine.
Si nous nous intéressons à la puissance électromotrice Pém, celle-ci dépendra de la force
électromotrice E car Pém = E I, donc :
Tém = Pém
= (E
I)
(2
n)
Si nous nous intéressons à la puissance utile Pu, celle-ci représentera la puissance
mécanique fournit par notre moteur, donc :
Tu = Pu
= Pu
(2
n)
Remarques :
Si dans le couple électromagnétique Tém on remplace E par k
Tém = (k
n
I)
(2
n) = (k
2
)
n
on trouve :
I.
Donc si on regroupe les éléments de cette équation qui sont fixes sous la forme d’une
constante K :
Tém = K
I.
Si devant la puissance nominale de la machine, les pertes mécaniques (frottements,
ventilation) sont négligées, le couple utile est assimilé au couple électromagnétique :
Tu = Tém si Pertes mécaniques = 0
5. BILAN DES PUISSANCES
Nous savons déjà que dans une machine la puissance qui entre dans une machine est
égale à la somme des puissances qui en sortent.
Autrement dit :
Pabsorbée = Putile + Pperdue
Dans le cas d’un moteur à courant continu, nous allons faire le bilan des différentes
puissances qui le composent.
Puissances absorbées :
Pa induit = U
I
Pa inducteur = Ue
Puissance utile :
Pu = Tu
Puissances perdues :
PJ induit = r
I2
PJ inducteur = R
PC = UV
IV
Ie
Ie2 = Ue
Ie
BEP ET
Leçon 22 Moteur à courant continu
Page 7/10
Remarques :
On voit dans les formules précédentes que Pa inducteur = PJ inducteur. Il n’est donc pas
nécessaire dans tenir compte dans le bilan des puissances.
Les pertes collectives PC correspondent aux pertes à vide, elles se calculent en
effectuant un essai sans charge du moteur à la même fréquence de rotation « n » et
pour la même force électromotrice « E » que dans le fonctionnement en charge.
Les pertes Joule induit PJ induit se calculent en faisant un essai rotor bloqué car tant que
le moteur ne tourne pas la force électromotrice « E » est nulle. Cet essai doit être fait
pour un courant équivalent à In donc pour une tension très inférieure à la tension
nominale Un (sinon il y a destruction du moteur à cause de la chaleur dégagée).
6. RENDEMENT
Nous connaissons déjà la formule du rendement :
= Pu
Pa.
Nous pouvons transformer cette formule afin de ne garder que des puissances
électriques :
= (Pa induit – Pp)
Pa induit
= (Un
In) – (r
(Un
In2) – (UV
IV)
In)
7. CARACTERISTIQUES D’UN MOTEUR A COURANT CONTINU
Caractéristique couple T en fonction du courant d’induit I à flux
T (Nm)
Tém
Tu
constant.
La forme de cette courbe vient de
l’équation : Tém = K
I.
I (A)
BEP ET
Leçon 22 Moteur à courant continu
Page 8/10
Caractéristique vitesse n en fonction du courant d’induit I à tension d’induit U
et à flux constants.
Lorsque le courant I augmente cela
signifie que la charge est plus
importante. On voit sur cette courbe
que la vitesse dépend peu de
l’augmentation de la charge.
I (A)
Caractéristique couple utile Tu en fonction de la fréquence de rotation n.
Tu (Nm)
Tr
Comme nous avons vu sur la courbe précédente
que la vitesse n variait peu, la courbe est presque
parallèle à l’axe du couple.
La courbe du couple résistant Tr permet de définir
le couple Tu minimum dont il faudra disposer au
démarrage et le point A0 correspond au
fonctionnement stable du moteur et de sa charge.
A0
n (tr.s-1)
8. EXERCICES
Exercice 1 : Les valeurs de tension et de courant de l’induit d’un moteur à courant
continu sont de 240 V et de 12 A. Sachant que la résistance interne de l’induit est de 0,5
, calculer la force électromotrice de ce moteur.
I = 12 A
U = 240 V
r = 0,5
E = U – (r I) = 240 – (0,5 12) = 234 V
Exercice 2 : Un moteur qui tourne à une vitesse de 1200 tr.min-1 a une tension d’induit
de 400 V pour un courant de 25 A. Le flux de l’inducteur est de 850 mWb. Calculer sa
force électromotrice si k = 22 puis calculer la résistance de son induit.
n = 1200 tr.min-1 = 20 tr.s-1
U = 400 V
I = 25 A
= 8500 mWb = 0,85 Wb
k = 22
E=k n
= 22 20 0,85 = 374 V
r = (U – E) I = (400 – 374) 25 = 1,04
Exercice 3 : Un moteur est alimenté en 300 V et absorbe un courant de 14,6 A lorsqu’il
tourne à une vitesse de 1340 tr.min-1. Un essai à vide, dans des conditions de vitesse et
de f.é.m. similaires, a donné un courant de 960 mA pour une tension de 292 V. Sachant
que la résistance de l’induit est de 580 m , faire le bilan des puissances et calculer le
rendement. Puis grâce à la vitesse et à la puissance utile, calculer le couple utile.
BEP ET
Leçon 22 Moteur à courant continu
Page 9/10
U = 300 V
I = 14,6 A
UV = 292 V
IV = 960 mA = 0,96 A.
r = 580 m = 0,58
Pa = U I = 300 14,6 = 4380 W
PJ induit = r I2 = 0,58 14,62 = 124 W
PC = UV IV = 292 0,96 = 280 W
= (Pa – Pp) Pa = (4380 – (124 + 280)) 4380 = 0,908 = 90,8 %
n = 1340 tr.min-1 = 22,3 tr.s-1
Pa = 4380 W
PJ induit = 124 W
PC = 280 W
Pu = Pa – Pp = 4380 – (124 + 280) = 3976 W
=2
n=2
22,3 = 140 rad.s-1
Tu = Pu
= 3976 140 = 28,4 Nm
Exercice 4 : Calculer le couple électromagnétique d’un moteur à courant continu qui
absorbe 25 A si le flux fournit par l’excitation est de 0,6 Wb et si la constante K vaut 4.
I = 25 A
= 0,6 Wb
K=4
Tém = K
I = 4 0,6 25 = 60 Nm
Exercice 5 : Un essai complet du moteur nous donne la courbe du couple utile en
fonction de la vitesse ci-dessous. Sachant que le couple résistant est de 9 Nm, trouver sur
la courbe à quelle vitesse va tourner notre moteur lorsqu’il est couplé à cette charge.
Tu (Nm)
A0
Tr
2
0
1650
2000
n (tr.min-1)
n = 1650 tr.min-1 lorsque la charge et le moteur sont couplés.
Exercice 6 : Dans un premier temps un moteur à CC tourne à 25 tr.s-1 sous une tension
de 400 V, sachant que k = 10 et que la résistance de l’induit est considérée comme nulle,
calculer le flux de son inducteur. Dans un deuxième temps, on alimente ce moteur avec
une tension de 600 V, calculer la nouvelle vitesse de rotation sachant que le flux et la
constante reste inchangés et que la résistance de l’induit est toujours considérée comme
nulle.
C3
C2
C1
BEP ET
Leçon 22 Moteur à courant continu
Page 10/10
Premier temps :
n = 25 tr.s-1
U = 400 V
r = 0 donc r I = 0 et E = U = 400 V
k = 10
= E (k n) = 400 (10 25) = 1,6 Wb
Deuxième temps :
U = 600 V
r = 0 donc r I = 0 et E = U = 600 V
k = 10
= 1,6 Wb
n = E (k
) = 600 (10 1,6) = 37,5 tr.s-1
Exercice 7 : Un moteur à CC alimenté sous une tension de 500 V absorbe un courant de
65 A. La résistance de l’induit est de 84 m et la vitesse de rotation est de 21 tr.s-1.
Calculer la puissance et le couple électromagnétique.
U = 500 V
I = 65 A
r= 84 m = 84.10-3
n = 21 tr.s-1
Pém = E I = (U – (r I)) I = (500 – (84.10-3 65)) 65 = 32100 W = 32,1 kW
Tém = Pém
= Pém (2
n) = 32100 (2
21) = 244 Nm
Exercice 8 : Un moteur à CC comporte N = 680 conducteurs pour un coefficient de
foisonnement de 2,22 et une fréquence de rotation de 1270 tr.min -1. Calculer la force
électromotrice si le flux est de 15 mWb.
N = 680
Coefficient de foisonnement de 2,22
n = 1270 tr.min-1 = 21,2 tr.s-1
= 15 mWb = 0,015 Wb
E=k n
= (680 2,22) 21,2 0,015 = 479 V
Exercice 9 : L’induit d’un moteur développe une puissance utile de 9,2 kW pour une
vitesse de rotation de 850 tr.min-1. Calculer le couple utile.
Pu = 9,2 kW = 9200 W
n = 850 tr.min-1 = 14,2 tr.s-1
Tu = Pu
= Pu (2
n) = 9200 (2
14,2) = 103 Nm
Exercice 10 : L’induit d’un moteur à excitation séparée a une résistance de 0,12
et
-1
tourne à 1800 tr.min . Le moment du couple électromagnétique est alors de 224 Nm.
Calculer la puissance électromagnétique, la force électromotrice si l’intensité du courant
dans l’induit est de 140 A et enfin la tension d’alimentation.
r = 0,12
n = 1800 tr.min-1 = 30 tr.s-1
Tém = 224 Nm
Pém = Tém
= Tém (2
n) = 224 (2
30) = 42200 W = 42,2 kW
I = 140 A
Pém = E I d’où E = Pém I = 42200 140 = 302 V
U = E + (r I) = 302 + (0,12 140) = 319 V
Téléchargement