Thème 1 : Les pavages dans le plan
Nous avons passé la première matinée à
chercher des formules nous permettant de répondre
aux questions que notre tuteur nous posait. Par
exemple :
Avec quelle forme peut-on réaliser un pavage ?
Qu’est ce qu’un pavage ?
Quelle technique utiliser pour construire une
figure qui pave le plan ?
Un pavage c’est un motif répété sur une surface sans qu’il y ait de vide, (ni de superposition) entre
les motifs.
Après le déjeuner, la directrice du stage nous a appris une méthode pour faire des pavages :
« La méthode de l’enveloppe » qui consiste à :
- prendre un triangle équilatéral,
- reproduire exactement le même,
- scotcher entre eux par les côtés.
- tracer un point au milieu d’un des triangles
- relier ce point aux trois sommets du triangle par des
lignes (qui ne doivent pas se croiser).
- découper suivant ces lignes sur une seule épaisseur.
- déplier.
Il ne reste plus qu’à décalquer la figure obtenue afin de
paver le plan.
Avec cette forme d’enveloppe (triangle équilatéral), le pavage se construit avec des rotations d’un
tiers de tour ayant pour centre les sommets du triangle de départ.
En effet chaque angle de départ est de 180/3 = 60 ° et l’angle du triangle final est de 2 * 60° = 120°
Ensuite, pour réaliser le pavage, on pourra tourner la figure 3 fois car 120° * 3 = 360°
Au début, nous pensions que cette méthode marchait avec toutes les formes d’enveloppes, mais
après quelques essais, nous avons vite compris que ca ne marchait pas avec n’importe quelle figure
géométrique.
Quels sont les formes d’enveloppes possibles?
Enveloppe triangulaire:
Chaque angle de la figure de base sera de la forme 180/nombre de rotation .
On note n, m et p le nombre de rotations qui sera effectué autour de chacun des sommets du
triangle de départ. On a 180/n + 180/m + 180/p = 180
soit : 1/n + 1/m + 1/p = 1
par exemple : 1/3 + 1/3 + 1/3 = 1 et 180°/3 = 60° : on retrouve le triangle équilatéral.
Ensuite nous allons faire un arbre de calcul (explorant toutes les possibilités) pour savoir quels sont
les triangles possibles pour réaliser un pavage :
On remarque que plus n, m et p augmentent au plus la somme de leur inverse diminue.
En conclusion, les seules formes d’enveloppe à 3 sommets sont les triangles équilatéraux, isocèles et
rectangles.
Enveloppe en forme de quadrilatère :
Chaque angle de la figure de base sera de la forme 180/nombre de rotation .
On note n, m, p et q le nombre de rotations qui sera effectué autour de chacun des sommets du
triangle de départ. On a 180/n + 180/m + 180/p = 360° = somme des 4 angles d’un quadrilatère
soit : 1/n + 1/m + 1/p +1/q = 2
par exemple : 1/2 + 1/2 + 1/2 + 1/2 = 2 soit 90° chaque angle, ce qui donne un rectangle ou un carré
Dans l’arbre de calcul, de la même manière que précédemment, si les valeurs de m,n ,p et q
augmentent, la somme de leurs inverses diminue et est inférieure à 1. On obtient donc comme seule
solution (m,n,p,q) = (2,2,2,2).
L’enveloppe ne peut donc qu’être carrée ou rectangle.
Enveloppe à 5 sommets :
Dans ce cas, la somme des angles d’un pentagone quelconque est de 540° (soit le triple de 180°)donc
la relation devient :
1/n
1
+ 1/n
2
+ 1/n
3
+1/n
4
+ 1/ n
5
= 3
Comme pour les autres, nous faisons un arbre de calcul pour savoir quelles sortes de pentagones
sont possible pour réaliser un pavage.
Dans l’arbre de calcul : (2 ;2 ;2 ;2 ;2) donne 1/2 + 1/2 +1/2 +1/2 +1/2=2,5 donc dès le premier essai
nous obtenons un résultat inférieur à 3.
Conclusion : Il n’existe pas de pavage à partir d’enveloppe de forme pentagonale.
Nous avons aussi fait des recherches sur des artistes qui ont fait des pavages célèbres comme par
exemple :
M.C Escher « Ciel et Eau » Penrose
Kenza Ain-guezal
Mathilde Benjamin
Lara Casanova
Julie Darmon
Julie Eberhardt
Annissia Ezzarouali
Héléna Follenbach
Océane Jacon
(Elèves de 2de6 du lycée Marseilleveyre)
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !