1
Nom : Corrigé Groupe : __________
Épreuve formative : Chapitre 4
1. Construis les triangles demandés et nomme-les par rapport à leurs côtés et à leurs angles.
a)
b)
2. Est-il possible de construire un triangle dont les angles mesureraient 50°, 60° et 60° ?
Oui Non Explique ta réponse : Car dans un triangle, la somme
des mesures des angles intérieurs est 180°.
50° + 60° + 60° = 170°
/50
/ 2
/ 3
/ 3
Les trois côtés mesurent respectivement
4 cm, 4 cm et 3 cm.
Nom par rapport à ses côtés :
Isocèle
Nom(s) par rapport à ses angles :
Isoangle et acutangle
Le côté DE mesure 5 cm, l’angle DEF
mesure 115° et le côté EF mesure 4 cm.
Nom par rapport à ses côtés :
Scalène
Nom(s) par rapport à ses angles :
Obtusangle
2
3. ABCE est un rectangle.
a)
BDC m
60° énoncé : La somme des angles
intérieurs d’un triangle est de 180° ou
Les angles aigus d’un triangle rectangle sont
complémentaires.
calcul : 180° - 90° - 30° = 60° ou 90° - 30° = 60°
b)
EDB m
120° énoncé : Les angles EDB et BDC
sont supplémentaires adjacents
calcul : 180° - 60° = 120°
4. Le quadrilatère ABCD est un losange, m
AD
= 5,2 cm, m
EA
= 4 cm et m
= 3,3 cm.
a) Si m
BAD = 79°, déduis m
ADC. 101°
b) Déduis la mesure de la diagonale
AC
. 8 cm
c) m
DEC = 90° énoncé : Les diagonales d’un losange sont perpendiculaires
d) m
DC
= 5,2 cm énoncé : Un losange a quatre côtés isométriques
5. Écris le nom de tous les quadrilatères ayant quatre côtés isométriques.
Losange et Carré
6. Nomme tous les quadrilatères ayant des diagonales isométriques.
Trapèze isocèle, Rectangle et Carré
/ 7
/ 1
/ 1
C
B
D
E
A
30°
D
B
A
C
E
3,3
4
5,2
/ 6
3
7. Les diagonales du quadrilatère ABCD se coupent en leur milieu. Donne les mesures des
angles demandées.
a) m
A = 50o
b) m
B = 130°
c) m
C = 50°
d) m
D = 130°
8. Construis le parallélogramme EFGH qui a un angle de 350 entre des côtés de 2 cm et 5 cm.
9. Qui suis-je ?
a) Je suis un polygone régulier ayant exactement quatre axes de symétrie. Carré
b) Je possède sept côtés isométriques et sept angles isométriques. Heptagone régulier
c) Je suis formé de six triangles équilatéraux isométriques. Hexagone régulier
d) Je suis un segment joignant 2 sommets non consécutifs dans un polygone.
Diagonale
e) Je suis un polygone ayant une somme des mesures des angles intérieurs de 1260°.
Ennéagone
f) Je suis la mesure d’un angle intérieur d’un pentagone régulier. 108°
10. Un polygone régulier a un périmètre de 60 cm. De quel polygone s’agit-il si la mesure d’un
côté est :
a) 20 cm? triangle équilatéral
b) 6 cm? décagone régulier
/ 3
/ 3
/ 6
/ 2
E
F
G G
H
4
11. Construis le polygone régulier demandé : un hexagone ayant 3 cm de côté.
12. Quelle est la mesure de l’angle extérieur demandé ? 100°
(démarche…)
Mesure de l’angle extérieur à l’angle de 120°
180°120° = 60°
Mesure de l’angle inconnu
360° (60° + 70° + 80°+ 50°) =
360°− 260° = 100°
13. Complète les égalités suivantes :
a) 509,78 dam = 509 780 cm
b) 40,09 mm = 0,040 09 m
c) 98 g = 0,098 kg
d) 0,985 244 daL = 9 852,44 mL
14. Dans chacune des situations suivantes, la virgule du nombre décimal n’est pas placée au
bon endroit pour traduire une réalité. Corrige cette erreur.
a) La hauteur de la porte de la salle de cours est de 0,191 m. 1,91 m
b) À 12 ans, Joliane pesait 4,27 kg. 42,7 kg
/ 3
/ 2
120°
8
7
5
?
/ 4
/ 2
5
15. Détermine la mesure manquante de cette figure.
Conversions
632 mm = 63,2 cm
3,2 dm = 32 cm
0,225 m = 22,5 cm
Mesure manquante
146,8 63,2 32 22,5 = 29,1 cm
Réponse : La mesure manquante est 29,1 cm.
/ 2
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !