B
B
ϕ:z→1−z
1+zD(0,1) Z=ϕ(z) = 2
1+z−1
z=2
(Z+1) −1 = 1−Z
1+Z|z|<1|Z−1|<|Z+ 1|Z
[−1,1] RZ > 0ϕ D(0,1)
{RZ > 0}
ϕ0(z) = −2
(1+z)2D(0,1)
logR{RZ > 0}B
iB =z∈C,−π
2<R<π
2
Cg(z) = exp(if(z))
D(0,1) C
f0D(0,1)
iB g0
g iB C
Rω(∆u)v−u(∆v)dx =R∂ω(∂nu)v−u(∂nv)dσ n
ω=B(a, r)
f(a) = 1
|Sd−1|ZSd−1
f(a+rη)dη .
2f(a) = 1
2πR2π
0f(a+reiθ)dθ a ∈Ωr > 0
D(a, r)⊂Ωa∈Ωrn>0
limn→∞ rn= 0
F(z) = f(a+Rz)D(0,1)
H(reiθ) = 1
2πR2π
0P(r, θ −t)F(eit)dt P (r, θ) = Rh1+reiθ
1−reiθ i
D(0,1) D(0,1) H|z|=1 =F h(z) = H((z−
a)/R)C∞D(a, R) ∆
v=f−h z0∈Ω
f D(a, R)m
v|z−a|=R≡0m6= 0 m > 0v−1(m)
a R D(a, R)
m > 0z7→ |z−a|v−1(m)
zm∈v−1(m)|zm−a|= maxz∈v−1(m)|z−a|E=
nz∈C,R[(zm−a)z]>|zm−a|ov−1(m)v(z)<
m z ∈E∩D(a, R)v(z)≤m=v(zm)z∈D(a, R)
zm
max(v) = 0 v=f−h
w=−(f−h)f=h D(a, R)h f
D(a, R)D(a, R)⊂Ω ∆f(z) = 0 z∈Ωf
C∞Ω
f(x) = x1Q(x)R
C∞