Université Montpellier II 2010-2011
L2S3 FLPH398
OPTIQUE GEOMETRIQUE
A. Relation de Descartes (exercice oral concours deug)
On souhaite mesurer l’indice de réfraction
n
d’un liquide transparent. Pour cela, on
dépose une goutte de ce liquide sur la face supérieure horizontale d’un parallélépipède
rectangle en verre, d’indice
nn
v
>
. Le dispositif est placé dans l’air, dont l’indice sera
pris égal à 1. On éclaire une des faces latérales verticales avec un faisceau lumineux et on
note
i
l’angle d’incidence des rayons sur cette face.
1. Dessiner le trajet du rayon lumineux dans le cas où le rayon est réfracté dans le liquide.
2. On constate que la réfraction dans le liquide n’est possible que lorsque
lim
ii
>
. Exprimer
lim
i
en fonction de
n
et de
v
n
.
3. Application numérique :
607,1=
v
n
,
°
=
81,47
lim
i
. Calculer l’indice de réfraction du cyclohexane.
B. Mesure de distances focales de lentilles : (Concours ENSI Deug 2003 I.D)
La lentille sphérique mince, notée L, est utilisée dans le cadre de l’approximation de Gauss. Elle est caractérisée
par son centre optique O et par sa distance focale image ƒ’.
La formule de conjugaison de Descartes (relation (1)) précise la position, sur l’axe optique, des points conjugués
A et A' :
'
11
'
1f
OAOA =
(1)
Grâce à la lentille convergente L, on projette, sur un écran, l’image nette A' B' d’un objet réel lumineux AB.
Objet et écran, fixes et distants de D (constante positive) sur un banc optique, sont orthogonaux à l’axe (figure
3).
Figure 3
I. Mesure de la distance focale image d’une lentille convergente L
1) Recopier, approximativement, la figure 3 et proposer une construction géométrique de l’image A' B' .
2) On pose
xAO =
(variable positive). Exprimer, en fonction de x et D, la quantité algébrique
'OA
.
3) Montrer que la formule de conjugaison (1) permet d’établir une relation entre x, D et ƒ’, relation qui se
présente sous la forme d’une équation du second degré en x.
4) Montrer qu’en dessous d’une valeur D
min
de D, il n’existe plus de valeur de x physiquement acceptable,
correspondant à une image nette sur l’écran. Déterminer, en fonction de ƒ’, la distance minimale D
min
.
5) Pour D D
min
, il existe deux positions O
1
et O
2
de la lentille L pour lesquelles on observe une image nette de
l’objet sur l’écran. On pose
11
xAO =
,
22
xAO =
(avec
21
xx
) et
dOO =
21
.
5.1. Exprimer, en fonction de D et ƒ’, chacune des deux solutions
1
x
et
2
x
.
5.2. Déterminer, en fonction de D et d, la distance focale image ƒ’.
5.3. Comment se nomme cette méthode focométrique ?
5.4. Application numérique D = 1,00 m ; x
1
= 0,275 m ; x
2
= 0,725 m. Calculer la distance focale image ƒ’.
Université Montpellier II 2010-2011
L2S3 FLPH398
II. Mesure de la distance focale image d’une lentille divergente
La lentille convergente précédente L (focale ƒ’ et centre O) est, en réalité, constituée de deux lentilles minces L
I
et L
II
accolées. La lentille L
I
est convergente, de distance focale image ƒ’
I
et de centre optique O
I
. La lentille L
II
est divergente, de distance focale image ƒ’
II
et de centre optique O
II
. On admet que les points O
I
et O
II
sont
pratiquement confondus avec le point O.
1) Connaissant ƒ’
I
, la mesure de ƒ’ par la méthode précédente permet d’accéder à la focale ƒ’
II
de
la lentille divergente. Donner la relation entre ƒ’, ƒ’
I
et ƒ’
II
.
2) Les valeurs D et ƒ’
II
sont imposées. Pour obtenir une image nette sur l’écran, montrer que la focale ƒ’
I
doit
être inférieure à une valeur maximale ƒ’
I,max
qu’on exprimera en fonction de D et ƒ’
II
.
3) Application numérique D = 1,00 m ; ƒ’
II
= – 0,300 m. Calculer ƒ’
I,max
.
C. Lunette afocale : (Concours ENSI Deug 2002 I.C)
Soit α, l'angle sous lequel un observateur voit, à l'œil nu, un objet el AB orthogonal à l'axe et situé à
l'infini. α est appelé diamètre apparent, ou diamètre angulaire, de l'objet AB. Le point A appartient à l'axe.
Afin de mieux observer cet objet, on souhaite fabriquer une lunette afocale, à l'aide de deux lentilles minces
convergentes, utilisées dans les conditions de Gauss.
α est le diamètre apparent, ou diamètre angulaire, de l'image finale A'B' done par la lunette. Le
grossissement G de l'appareil est défini par G = α '/ α.
I. Principe de la lunette
1) Qu'est-ce qu'un système optique afocal ?
2) Soit e, la distance qui sépare les deux lentilles de me axe optique. Exprimer, en fonction de leurs
distances focales images respectives f'
1
et f'
2
, la distance e.
3) Faire un schéma et tracer la marche d'un faisceau de rayons issus de B, point à l'infini
n'appartenant pas à l'axe.
4) Exprimer, en fonction de f'
1
et f'
2
le grossissement G.
5) L'image A'B' est-elle renversée par rapport à l'objet AB ?
II. Construction de la lunette
On dispose de deux lentilles, deme diatre, marquées : +20 ô et + 1 ô.
1) Que signifie l'inscription "+20 ô " ?
2) Quelle est, de ces deux lentilles, celle qui sera choisie pour jouer le rôle d'objectif ? Justifier le choix.
3) Application numérique : Calculer le grossissement G.
D. Cavité confocale
Une cavité laser est un système optique constitué de deux miroirs sphériques
identiques, M
1
et M
2
, distants de
l
, de même rayon
R
. Les surfaces réfléchissantes
des deux miroirs se font face. Leurs axes sont confondus, les deux foyers F
1
et F
2
des
deux miroirs sont situés au même point F, cette cavité est alors appelée cavité
confocale.
1. Un objet ponctuel lumineux A est situé dans la cavité sur l’axe optique. Au bout de combien de réflexions sur
M
1
et M
2
l’image du point A coïncide-t-elle avec ce point ?
2. Un petit objet lumineux linéaire AB est situé dans un plan de front à l’intérieur de la cavité. Au bout de
combien de réflexions sur M
1
et M
2
l’image de AB coïncide-t-elle avec cet objet ?
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !