Sup PCSI1 - Exercices de physique Champ magnétique
1
Champ magnétique
1. champ créé par deux fils :
Deux fils électriques rectilignes, très long, sont disposés parallèlement à une distance d = 1,0 cm. On rappelle que le champ
électrique créé en un point P par un « fil rectiligne infini » traversé par un courant d’intensité I a un module d’expression :
B(P) = µ
o
.I/(2πr) où µ
o
= 4π.10
-7
H.m
-1
et r est la distance entre le point P considéré et le fil.
Dessiner l’allure des lignes de champ pour le champ magnétique créé par un fil rectiligne.
Les champs magnétiques étant additifs, en déduire la valeur du module B(P) du champ pour un point P situé exactement à
mi-distance entre les deux fils, parcourus par un courant d’intensité I = 10 A :
a) si les fils sont traversés par des courants de même sens ;
b) si les fils sont traversés par des courants de sens opposés.
Réponse : a) B = 0 ; b) B = 2. µ
o
.I/(2πr) = 8,0.10
-4
T.
2. Bobines de Helmholtz et de « Holtz-helm » :
Un système de bobines de Helmholtz est constitué de deux bobines plates de diamètre 2R = 13,6 cm, comportant chacune
320 spires, disposées parallèlement et de façon coaxiale, à une distance d = 6,8 cm = R.
On donne l’expression du champ magnétique créé sur l’axe d’une spire de rayon R et vue sous un angle ϕ depuis le point P
de son axe où le champ est évalué :
μ
2 
avec µ
o
= 4π.10
-7
H.m
-1
.
1°) Dans les conditions usuelles d’emploi, les bobines sont alimentées par un courant électrique d’intensité I les parcourant
dans le même sens. On peut montrer que le champ magnétique créé par les bobines est alors pratiquement uniforme dans
la zone située entre les bobines, et correspond au double de la valeur du champ créé par une bobine plate sur son axe à
une distance R/2 de son centre. Montrer que la valeur de son module est donnée par la relation :
1,43. μ

2
Tracer une allure de la carte de champ correspondant à ce système. Calculer B pour I = 0,20 A.
2°) Les deux bobines sont maintenant branchées dans des sens
opposés. Discuter de la symétrie du problème et justifier que le
champ magnétique sera alors nul au centre du dispositif.
Commenter et discuter l’allure de la carte de champ magnétique
fournie ci-dessous.
Bobines placées en opposition (bobines de « Holtz-Helm »)
Réponse :
1°) sinϕ = 2/√5 pour toutes les spires en négligeant
l’épaisseur de la bobine. Les champs produits par les deux
bobines s’additionnent. B = 8,46.10
-4 .
T
Lignes de champ parallèles à l’intérieur du système de bobine,
s’évasant rapidement en sortie.
2°) Les champs produits au centre du dispositif par les deux bobines sont maintenant opposés.
Sup PCSI1 - Exercices de physique Champ magnétique
2
3. Solénoïde vu à grande distance :
On envisage un solénoïde circulaire possédant N spires de même rayon a et de même axe (Oz) réparties régulièrement le
long d'un cylindre de longueur L et parcourues par un courant d'intensité I.
1°) On donne l’expression du champ magnétique créé en un point M situé sur l’axe (Oz), pour lequel les faces du solénoïde
sont vues respectivement sous un angle α
1
et sous un angle α
2
:
( )
21
coscos
2
)(
αα
µ
=
L
NI
zB
o
. Vérifier que ce champ tend
à s’annuler à grande distance du solénoïde.
Donner l'expression du champ au point M en fonction de sa cote z sur l'axe (Oz). On place l’origine O sur l’une des faces du
solénoïde.
2°) En s'éloignant du solénoïde, on a z >> a et z >> L. En déduire par un développement limité la partie principale de B(z) et
interpréter celle-ci à l'aide du concept de dipôle magnétique.
On rappelle que pour un dipôle magnétique de moment magnétique
, Il est possible d’expliciter le champ qu’il produit
uniquement en fonction du vecteur-position 
  et du moment magnétique
selon :
μ
4
.3
.
²
!
Réponse :
²2
²
1
²²
cos
1
z
a
za
z
+
=
α
et 3
2
²
²
²
1
(2
²
1
(²
cos z
La
z
a
Lz
a
Lza
Lz
+
=
α
donc
( )
3
21
²
2
coscos
2
)(
z
La
L
NI
L
NI
zB
oo
αα
=
soit en posant M=N. I.S = N.I.πa²
33
2
²
2
)(
z
M
z
a
NI
zB
oo
π
µ
π
π
µ
=
Résultat cohérent avec l’expression fournie pour le champ créé par un dipôle magnétique de moment
avec dans le cas
étudié 
=="#
$
et
=#
$
, qui donne
3
.
²
=3."
"
%
"#
$
#
$
=2#
$
4. Moment magnétique d’un aimant.
1°). Rappeler l’expression du champ magnétique créé à l’intérieur d’un solénoïde très long, parcouru par un courant
d’intensité I et comportant N spires distribuées sur une longueur L.
Montrer que le module B de ce champ peut s’écrire B = µ
o
.M/V M est le moment magnétique du solénoïde et V une
quantité à exprimer et interpréter.
2°) Le champ magnétique mesuré à proximité immédiate d’un aimant droit est B = 0,10 T. Par analogie à la situation
précédente, déterminer un ordre de grandeur pour son moment magnétique. On donne les dimensions du barreau
aimanté : longueur 10 cm, section 1,0 cm². On donne µ
o
= 4π.10
-7
H.m
-1
.
3°) Quelle devrait être la valeur de l’intensité amenant un champ magnétique de même valeur dans un solénoïde
comportant 1000 spires par mètre ?
4°) En exploitant l’expression fournie ci-dessous du champ créé par un dipôle magnétique de moment M, évaluer un ordre
de grandeur du moment magnétique de la Terre, connaissant la valeur du champ magnétique aux pôles B = 56 µT et le
rayon terrestre R = 6370 km. On note =
où O est le centre du dipôle magnétique et P la position o ù B est exprimé.
=μ
4
.3
.
²
!
Réponse :
1°) B = µ
o
NI/L ; M = IS d’où M = B.V/µ
o
; 2°) M ≈ 0,8 A.m² ; 3°) I = B/(µ
o
n) avec n = N/L =1000 spires/m ; I = 80 A ;
4°) Pour P au pôle,
et sont colinéaires ; B = 2Mµ
o
/(4πR
3
) donne M = 4πR
3
B/(2µ
o
) ; M ≈ 7,2.10
22
A.m²
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !