Etude documentaire sur les fibres optiques
Les premières expériences de transmission optique
datent de la fin du XIXème siècle, mais le guidage
efficace de la lumière jusqu’au destinataire de
l’information n’a pu se développer que depuis l’avènement
de sources laser de faible divergence (1960), et après
avoir réglé les problèmes posés par la transmission en
atmosphère libre. En effet lorsque la lumière se propage
dans l’atmosphère, elle est :
D’une part, absorbée en partie ;
D’autre part diffusée par les poussières ou
déviée par des variations d’indice de réfraction
dues aux variations de température, de sorte
qu’on ne peut guère envisager de transmission
directe, sur de longues distances, dans
l’atmosphère.
On a donc été conduit à envisager le guidage de la
lumière dans un milieu transparent, sans impuretés (pour
qu’il n’y ait pas de variation d’indice), protégé de toute
influence extérieure. La fibre optique est alors apparue,
utilisant le principe bien connu des fontaines lumineuses.
(Les fontaines lumineuses que l'on voit dans les parcs
répondent à ce principe. Dans le jet, la lumière subit des réflexions totales successives aux surfaces de
séparation eau / air.)
Jusqu’en 1970, l’affaiblissement du faisceau restait supérieur à 30% de sa valeur
initiale au bout de 1 km, et puis les recherches tant sur les matériaux que sur les techniques de
fabrication ont permis de mettre au point des fibres d’excellente qualité n’atténuant le signal à 1% de sa
valeur initiale qu’au bout de 100 km.
Le principe de la propagation de la lumière dans une fibre optique est relativement simple. Le matériau
utilisé est en général la silice (matériau très répandu et relativement peu onéreux), avec un taux
d’impuretés inférieur à quelques g par kg de silice.
Il existe trois types de fibres optiques :
Les fibres à saut d’indice
Les fibres à gradient d’indice.
Les fibres monomode
L’idée d’utiliser ce principe pour guider
de la lumière remonte au XIXe siècle
lorsqu’en 1870 John Tyndall, utilisant un
jet d’eau démontra, à l’occasion d’une
conférence au grand public, que la
lumière pouvait être guidée sur un
chemin courbe. Il prédisait l’usage des
fibres optiques pour les communications.
Les fibres au saut d’indice :
Elles sont constituées d’un cœur cylindrique transparent
ayant un diamètre maximal de l’ordre du mm, d’indice de
réfraction n1 constant, entouré d’une gaine concentrique
d’indice de réfraction n2 < n1 ; on a couramment (n1 n2)
0,01.
L’ensemble est protégé par un revêtement plastique.
Une succession de réflexions totales permet au rayon
lumineux de rester dans le cœur de la fibre jusqu’à sa face de sortie.
Ceci entraîne l'existence d'un « cône d'acceptance » à l'entrée tel que :
tout rayon d'entrée situé dans le cône va se propager dans le cœur par réflexion totale : on a
affaire aux
rayons guidés
.
tout rayon en dehors du cône va se réfracter à l'interface et sera perdu dans la gaine optique et
éventuellement dans l'enveloppe protectrice : ces rayons ne sont pas guidés et occasionnent des
pertes de propagation.
Les fibres à gradient d’indice :
Elles sont constituées d’un cœur dont l’indice de réfraction décroît continûment du centre vers la
périphérie, d’une valeur n1 à n2 < n1 . Il se produit une multitude de phénomènes de réfraction qui
courbent le rayon lumineux. Les pertes de propagation sont moins importantes.
Questions :
Une fibre optique est constituée d’un cylindre d’indice de n1 = 1,50, appelé cœur, entouré d’une gaine
cylindrique de même axe, d’indice de réfraction n2 = 1,49.
1. Déterminer littéralement et numériquement l’angle limite lim de réflexion totale à l’interface
cœur-gaine.
2. La face d’entrée de la fibre est plane et se trouve dans l’air ( nair=1,00). On s’intéresse à un rayon
lumineux qui pénètre dans la fibre au point O, sur l’axe de la fibre, avec un angle d’incidence i.
Montrer que, pour les rayons qui pénètrent dans la fibre au point O soient guidés par réflexion
totale sur l’interface cœur-gaine, il faut qu’ils soient contenus dans un cône de demi-angle
d’ouverture i0 que l’on déterminera littéralement puis numériquement.
3. Dans la fibre optique, la propagation d’une radiation électromagnétique de longueur d’onde suit
la loi : P = P0 x e- x dans laquelle P = puissance transmise, P0 = puissance incidente, = coefficient
d’atténuation linéique, x = longueur de la fibre.
a. La puissance transmise par une fibre de 3,00 km vaut 50,0 % de la puissance initiale.
Calculer le coefficient d’atténuation linéique .
b. Quelle est la longueur d’une fibre pour laquelle la puissance transmise est le dixième de la
puissance incidente ?
cœur
gaine
O
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !