PROGRAMME DE COLLES DE PHYSIQUE
Semaine 7 du 14 au 18 Novembre 2016
Cours S5 : Formation des images en optique géométrique
(INSTRUMENTS D'OPTIQUE EN EXERCICES)
I. Étude d'un 1er système optique : le miroir plan
II. Formation d'une image
III. Étude des lentilles minces dans l'approximation de Gauss
IV. Présentation rudimentaire de l'œil
V. TP-Cours : Projection d'une image
Cours S6 : Ouverture au monde quantique
(Cours sur le IV. et V.)
I. Succès et limites de la physique classique
On revient sur les succès de la physique classique qui ont permis de prédire et d'interpréter la
quasi-totalité des phénomènes observés depuis le mouvement des planètes jusqu'à la
diffraction de la lumière.
II. Aspects corpusculaires de la lumière : notion de photon
Limites de la théorie ondulatoire de la lumière :
i) Rayonnement du corps noir : en 1900, Max Planck se penche sur le problème et propose une
hypothèse révolutionnaire :
« Les échanges d'énergie entre la lumière et la matière sont quantifiés et sont multiples d'une
valeur minimale, le quantum d'énergie, dont l'expression est : E = h.ν »
ii) effet photoélectrique : en 1905, Albert Einstein proposa une interprétation de l’effet
photoélectrique en utilisant l’hypothèse des quanta de Planck. Il supposa que :
« L'énergie de la lumière est quantifiée, elle est constituée de quantas indivisibles d'énergie
E = h.ν chacun d'eux pouvant être absorbés ou produits par la matière »
Caractéristiques dynamiques du photon :
i) Preuve de l'existence du photon : Expérience de Kimble, Dagenais et Mandel
ii) Fiche signalétique du photon : énergie et quantité de mouvement.
iii) Interprétation de l'effet Compton : on interprète cette expérience en utilisant les propriétés du
photon.
La lumière : onde ou corpuscule ?
Il faut finalement accepter la dualité onde-corpuscule pour la lumière : les deux descriptions ne
s’opposent pas mais se complètent. En fonction du phénomène considéré on peut considérer la lumière
comme une onde ou un faisceau de photons.
III. Aspects ondulatoires de la matière : notion de fonction d'onde
Hypothèse fondamentale de Louis de Broglie : Il postula en 1924 l'existence pour toute particule
d'une onde de matière qui lui est associée et établit sur des arguments théoriques une expression
pour la longueur d'onde de cette onde :
λDB=h
p
L'analogie entre l'optique ondulatoire et la mécanique ondulatoire est établie.
Quelques ordres de grandeur permettent de définir un 1er critère quantique.
Confirmations expérimentales :
i) Les américains Davisson et Germer apportent la première preuve expérimentale de l'hypothèse
de De Broglie en observant la diffraction d'un faisceau d'électrons par un monocristal de Nickel.
ii) expérience d'interférences atomiques de Shimizu et Takuma (1992)
iii) application au microscope électronique : principe de fonctionnement
Interprétation probabiliste d'une expérience d'interférences « particules par particules »
On reprend l'expérience de Shimizu et Takuma où les atomes de Néon, tous préparées dans le même état
quantique, sont envoyées un par un sur un dispositif interférentiel de type Fentes d'Young.
i) Aux mêmes conditions initiales correspondent des impacts différents : il s'agit d'un
comportement non déterministe des particules
ii) Il s'agit d'un phénomène probabiliste NON classique : p(M) ≠ p1(M) + p2(M)
Notion de fonction d'onde : cette fonction « contient » toutes les informations relatives à l’état de
la particule et représente l'amplitude de probabilité de trouver la particule au point M à l'instant t.
Retour sur l'expérience des Fentes d'Young : on retrouve le résultat probabiliste NON classique
p(M) ≠ p1(M) + p2(M)
IV. Inégalité de Heisenberg spatiale
Notion d'indétermination quantique : elle nous renseigne sur la dispersion des résultats possibles
pour la mesure d'une grandeur sur un système quantique.
Il faut savoir que la mesure d'une grandeur x sur un système quantique donne a priori un résultat
aléatoire.
Elle est intrinsèque aux phénomènes quantiques et ne doit pas être confondue avec l'incertitude
de mesure.
Exemple : diffraction d'un quanton par une fente
En localisant le quanton avec précision à l'aide d'une fente étroite, on introduit une dispersion sur
sa quantité de mouvement. On établit la relation :
Δx.Δpxh
Indétermination position-quantité de mouvement
Il s'agit de l'inégalité spatiale de Heisenberg
Δx.Δpx
i) La notion de trajectoire déterministe n'a plus de sens en physique quantique
ii) Il est impossible de mesurer simultanément position et vitesse d'un quanton avec une précision
infinie.
iii) L'état de repos pour une particule quantique est impossible.
Énergie cinétique minimale d'un quanton confiné : on montre qu'un quanton confiné dans une
zone de largeur l ne peut pas avoir une énergie cinétique moyenne nulle
EcEcmin =2
2ml2
Énergie mécanique minimale d'un oscillateur harmonique quantique
Conséquence de l'inégalité d'Heisenberg : l'oscillateur harmonique quantique ne peut pas avoir
une énergie mécanique nulle. On montre que
EEmin= ω0
V. Quantification de l'énergie d'un quanton confiné dans un puits infini à 1D
Position du problème : quanton de masse m confiné dans un puits de potentiel de largeur l.
Le quanton, qui ne connaît pas l'état de repos, effectue d'incessants aller et retour en rebondissant
sur les parois du puits de potentiel avec une énergie cinétique minimale :
Ecmin =2
2ml 2
Analogie avec le modèle de la corde vibrante fixée à ses deux extrémités
On montre que l'onde matière associée au quanton est nécessairement stationnaire.
On traduit ensuite les conditions aux limites, à savoir :
Ψ(x=0,t)=Ψ( x=l , t)=0
par continuité de
l'amplitude de probabilité.
Par analogie avec le modèle de la corde vibrante fixée à ses deux extrémités, on montre que la
longueur d'onde de De Broglie est quantifiée : la largueur l du puits de potentiel est
nécessairement un multiple entier de
λDB
2
Niveaux d'énergie : on montre que les niveaux d'énergie du quanton confiné sont quantifiés :
En=n2E1=n2h2
8ml2
est l'énergie de l'état fondamental, d'autant plus grande que la zone de
confinement est réduite.
Pertinence du modèle proposé : La relation précédente permet de déterminer un ordre de
grandeur de l'énergie de l'état fondamental en physique nucléaire et en physique atomique.
Les résultats obtenus sont cohérents et valident donc le modèle proposé.
Ouverture aux boîtes quantiques : Il faut savoir retrouver 3 résultats essentiels :
i) L'énergie mécanique d'un quanton confiné est quantifiée.
ii) Un quanton confiné possède un état fondamental et l'inégalité d'Heisenberg interdit
l'immobilité.
iii) Dans certaines configurations, il existe des nœuds de probabilité de présence.
Capacités exigibles
Cours S5 : Formation des images en optique géométrique
• Savoir construire l’image d’un objet par un miroir plan, identifier sa nature réelle ou virtuelle.
• Connaître les définitions et les propriétés du centre optique, des foyers principaux et secondaires, de la
distance focale et de la vergence.
• Lentille CV ou DV : construire l’image d’un objet situé à distance finie ou infinie à l’aide de rayons
lumineux.
Connaître et savoir utiliser les relations de conjugaison.
• Savoir modéliser l'œil comme l'association d'une lentille de vergence variable et d'un capteur fixe.
Connaître la limite de résolution angulaire et plage d'accommodation d'un œil emmétrope
Établir et connaître la condition D > 4f ' pour former l'image réelle d'un objet réel par une lentille
convergente.
Cours S6 : Introduction au monde quantique
• Savoir décrire des phénomène inexplicables par la physique classique : catastrophe ultraviolette et
effet photoélectrique et présenter les hypothèses révolutionnaires de Planck (1900) et Einstein (1905).
• Savoir proposer une interprétation simple de l'effet photoélectrique en utilisant l'hypothèse d'Einstein.
• Savoir décrire l’expérience de la lame semi-réfléchissante qui a mis en évidence le photon dans sa
propagation libre.
• Savoir interpréter l’effet Compton en utilisant les propriétés du photon.
• Savoir énoncer l’hypothèse fondamentale de Louis de Broglie.
• Savoir décrire un exemple d’expérience illustrant la notion d’ondes de matière : expérience de
Davisson et Germer, expériences d'interférences atomiques ou moléculaires.
• Savoir interpréter une expérience d’interférences «particule par particule» en termes probabilistes.
• Savoir définir une indétermination quantique et la relier à la dispersion des résultats obtenus.
• Savoir retrouver la relation
Δx.Δpxh
en étudiant la diffraction d'un quanton par une fente.
Connaître l'inégalité spatiale de Heisenberg.
• Savoir retrouver l'énergie cinétique minimale d'un quanton confiné.
• Savoir retrouver l'énergie mécanique minimale d'un oscillateur harmonique quantique.
• Savoir retrouver la quantification de l'énergie d'un quanton confiné dans un puits infini à 1D.
FICHE D'ÉVALUATION KHÔLLE PCSI Semaine 7
NOM :
PRÉNOM :
NOTE :
Question de cours : Exercice(s) :
Compétences transversales A B C D Commentaires
S'approprier et analyser le problème
Savoir réinvestir les résultats de cours dans de
nouvelles situations
Savoir faire preuve d'initiatives et de réactivité
face aux indications fournies par l'examinateur
Savoir présenter son travail :
tableau organisé et soigné, communication
claire et convaincante
Compétences disciplinaires A B C D Commentaires
S5 : Formation des images en optique géométrique
Savoir appliquer les lois de l'optique géométrique
à l'étude d'un instrument d'optique
S6 : Ouverture au monde quantique
I nterpréter une expérience
d’interférences «particule par particule»
en termes probabilistes
Connaître et savoir utiliser l'inégalité spatiale
de Heisenberg
Retrouver l'énergie cinétique
minimale d'un quanton confiné
Retrouver l'énergie mécanique minimale
d'un oscillateur harmonique quantique
Retrouver la quantification de l'énergie d'un
quanton confiné dans un puits infini à 1D
A : acquis / B : en cours d'acquisition / C : insuffisant / D : non acquis / N : non éval
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !