Génie génétique

publicité
Génie
génétique
Participez à la recherche sur l’athérosclérose
Atelier d’expérimentationMacròfag
PROTOCOLE
Génie génétique
À la recherche d’une cible pour le traitement de l’athérosclérose
Introduction
La recherche biomédicale comprend l’étude des processus physiques et chimiques
se produisant au sein des êtres vivants, ainsi que des processus déclenchant les
maladies. L’un des principaux objectifs de ce domaine de recherche est d’identifier
des cibles thérapeutiques, c’est-à-dire des parties de l’organisme vers lesquelles
diriger de nouveaux traitements stimulant des réponses et permettant de lutter
contre les maladies.
Ce protocole entre dans le cadre d’une ligne de recherche biomédicale centrée sur
l’étude d’une éventuelle cible thérapeutique susceptible d’être reconnue par un
médicament contre l’athérosclérose.
Comment se produit l’athérosclérose ?
L’athérosclérose est une maladie vasculaire due à l’accumulation de graisses sur les parois des
vaisseaux sanguins, pouvant provoquer des manifestations très diverses et de sévérité variable en
fonction de la localisation des vaisseaux affectés et du stade d’évolution de la maladie. Dans notre
société actuelle, la consommation d’aliments très riches en graisses saturées a augmenté
considérablement les risques de souffrir de maladies cardiovasculaires. Cet excès de graisse dans
notre organisme peut se déposer et s’accumuler au niveau de certains points des parois des artères
sous forme de plaques, appelées « plaques d’athérome », pouvant obstruer la lumière des vaisseaux
et bloquer la circulation sanguine.
----- Artère normale
-----
Athérosclérose modérée
----- Athérosclérose sévère
Génie génétique
-2-
Le cholestérol et les macrophages
L’une des substances lipidiques constituant les plaques d’athérome est le cholestérol. Pour empêcher
le cholestérol de se déposer sur les parois, notre organisme possède un système de « nettoyage »,
les macrophages. Ces cellules circulent dans le sang et ont la capacité de capturer les molécules de
mauvais cholestérol, connues sous le nom de LDL (Low Density Lipoprotein, ou lipoprotéines de
basse densité).
Les macrophages les reconnaissent grâce à un
récepteur situé sur leur membrane. Ce système
de nettoyage est efficace si l’excès de cholestérol
LDL
n’est pas très important.
LDL oxydé
Oxydation du LDL
Si les quantités de cholestérol sont très abondantes,
les macrophages continuent à capturer les LDL.
Prolifération
de cellules
endothéliales
Cependant, après avoir ingéré de grandes quantités
de LDL, les macrophages se transforment en cellules
appelées « spumeuses ». Celles-ci produisent des
Activation du
système
immunitaire
substances provoquant l’inflammation et la
prolifération de cellules de la paroi artérielle
(endothéliales), ce qui entraîne la formation de la
Cellule
spumeuse
plaque d’athérome pouvant bloquer la circulation
sanguine.
LDL
Actuellement, nombre de groupes de recherche
partout dans le monde, notamment le Groupe de
recherche de récepteurs nucléaires de l’université de
Barcelone, visent à mieux comprendre la participation
des macrophages à la régulation des taux sanguins de
Oxydation du LDL
cholestérol et au développement de l’athérosclérose.
Plus précisément, les scientifiques étudient le rôle
d’une protéine que possèdent les macrophages, appelée « Mylip ». C’est une protéine dont la
principale fonction est de dégrader le récepteur situé sur la membrane des macrophages qui leur
permet de reconnaître les LDL. Les scientifiques ont constaté qu’une production trop abondante de
Génie génétique
-3-
cette protéine réduit l’ingestion du cholestérol par les macrophages. Cependant, son rôle dans le
cadre de l’athérosclérose n’est pas encore clairement défini.
Macrophage
Compte tenu du fait qu’il a été observé que la
protéine Mylip est liée à la régulation du mauvais
cholestérol, les scientifiques pensent que ce
processus de régulation pourrait constituer une
nouvelle cible pour le traitement de
LDL oxydé
l’athérosclérose.
Oxydation du LDL
Comment pouvons-nous étudier la protéine Mylip impliquée dans la régulation du cholestérol ?
Pour pouvoir étudier cette éventuelle cible thérapeutique, les chercheurs doivent la produire en
laboratoire en grandes quantités. Pour ce faire, ils utilisent une technique de génie génétique, appelée
« transformation bactérienne », grâce à laquelle ils transfèrent l’ADN d’un organisme à une bactérie
pour que celle-ci produise de grandes quantités d’ADN qu’ils introduisent par la suite dans d’autres
types de cellules pour que ces dernières produisent la cible thérapeutique de l’étude.
À cet effet, ils travaillent à partir d’une forme purifiée du gène produisant la protéine Mylip. Ils
l’unissent à un fragment d’ADN circulaire appelé « plasmide », puis l’introduisent dans des bactéries
pour que ces dernières produisent la réplication du matériel génétique.
Nous vous proposons dans le cadre de ce protocole de jouer le rôle de biotechnologues et de mener
à bien une transformation bactérienne !
Génie génétique
-4-
Organisation de l’atelier :
1. Nous allons effectuer une transformation de bactéries afin qu’elles contiennent l’ADN
responsable de la production de la protéine Mylip, et qu’elles agissent comme des bioréacteurs,
fabriquant le matériel génétique en grandes quantités.
2. Nous procéderons à la croissance d’une culture de bactéries dans un milieu adéquat nous
permettant de sélectionner les bactéries ayant incorporé le gène.
3. Nous purifierons le matériel génétique comportant le gène responsable de la production de la
protéine Mylip afin qu’il puisse être introduit dans d’autres types de cellules qui produiront la
protéine*.
* Compte tenu du fait que la durée de la croissance des bactéries est d’un jour et demi, la purification sera effectuée à partir
d’une culture de bactéries transformées préalablement préparée par les moniteurs.
Génie génétique
-5-
Équipement et matériel nécessaires pour chaque groupe ou paillasse
2 tubes contenant des
1 tube dans de la
1 tube contenant le
Micropipette de 20 µl et
bactéries dans de la
glace contenant l’ADN
milieu de culture
de 200 µl
glace étiquetés avec le
circulaire appelé
bactérienne « LB »
nº 1 et 2.
« plasmide pCR2.1-
(C)
(A) Bac porexpan +
Mylip ».
glace
(B)
Pointes pour
Pointes pour
2 boîtes de Pétri
micropipettes de 20 et
micropipettes de 20 et
contenant de la gélose
200 µl
200 µl
et l’antibiotique
Étaleurs en plastique
(D) ampicilline
Bain-marie contenant
Portoir flottant pour
Récipient de résidus
Récipients de résidus
de l’eau distillée
tubes
solides
liquides
Chronomètre
Ruban adhésif
1 tube contenant 1 ml
1 tube contenant la
1 tube contenant la
Feutre indélébile
de culture bactérienne
« Solution 1 » de
« Solution 2 » de
(E)
Miniprep (F)
Miniprep (G)
1 tube contenant la
1 tube contenant du «
1 tube contenant de
1 tube contenant de
« Solution 3 » de
chloropan » (I)
l’« éthanol »
Miniprep (H)
l’eau ultra
pure (mEq).
Génie génétique
-6-
(A) Bactéries permettant l’entrée d’ADN (appelées « compétentes XL1-blue »)
(B) ADN circulaire appelé « plasmide » (pCR2.1)
(C) Milieu de culture LB (Luria Bertani) : extrait de levure 5 g/l, tryptone 10 g/l, NaCl 5 g/l. Stériliser à
l’autoclave. Conserver au réfrigérateur.
(D) Boîtes LB/ampicilline : milieu de culture LB, gélose 1,6 %, ampicilline 100 µg/ml.
(E) Bactéries cultivées sur un milieu 2XYT, O.N. (16 heures)
(F) Solution 1 : 50 mM de glucose/25 mM de TrisHCl à pH 8,0/10 mM d’EDTA. Diluer dans de l’H2O
distillée.
(G) Solution 2 : 20 µl de détergent SDS (dodécyl sulfate de sodium) 10 %/4 µl de NaOH 10 N/176 µl
d’H2O mQ/pour chaque échantillon. Préparer en double exemplaire le jour de l’expérience.
(H) Solution de Miniprep 3 : 73,60 g d’acétate de potassium/28,75 ml d’acide acétique. Diluer dans de
l’H2O mQ jusqu’à un volume final de 250 ml.
(I) Chloropan : 25 ml de phénol équilibré/24 ml de chloroforme/1 ml d’alcool isoamylique. Centrifuger
pendant 10 minutes à 3 000 tr/min.
Génie génétique
-7-
Procédures
1 — TRANSFORMATION BACTÉRIENNE
Une transformation bactérienne est un processus biotechnologique grâce auquel les scientifiques
introduisent le matériel génétique responsable de la production d’une protéine en cours d’étude dans
une cellule bactérienne. Cette dernière agira comme un bioréacteur et produira des copies de ce
matériel génétique, qui pourra être introduit par la suite dans un autre type de cellule pour qu’elle
produise la protéine d’intérêt*.
Cet atelier se déroulera à partir du gène purifié de notre protéine « Mylip », qui a été introduite dans
un plasmide ou fragment d’ADN circulaire.
Gène Mylip
À partir de ce matériel génétique, nous effectuerons une transformation bactérienne, c’est-à-dire
l’introduction du gène responsable de la production de notre protéine dans la bactérie au moyen d’un
choc thermique, c’est-à-dire, en soumettant l’échantillon à différentes températures.
* Si la protéine d’intérêt est peu complexe, les bactéries transformées peuvent elles-mêmes déjà agir comme des bioréacteurs
pour produire la protéine.
Génie génétique
-8-
Protocole pour la transformation bactérienne
1. Nous disposons de deux tubes contenant les bactéries dans de la glace. Chaque tube contient
2
une solution tampon qui favorisera la transformation grâce aux cations Ca + du sel CaCl2
contenu dans le tampon.
2+
Que se passe-t-il ? Les cations Ca
préparent par l’action du
froid les membranes cellulaires pour qu’elles soient perméables
2+
à l’ADN. Les ions Ca
se lient aux phospholipides de la
membrane cellulaire, neutralisant leurs charges négatives et
formant de petits pores au niveau de la membrane de la
bactérie.
2. Ajoutez l’ADN sous forme de plasmide aux bactéries : pipetez 10 µl de plasmide (tube P) à
l’aide de la micropipette de 20 µl et ajoutez-les au tube 2 contenant les bactéries. Couvrez le
tube puis mélangez délicatement en le tapotant avec le doigt. Le tube 1 sera le témoin
contenant des bactéries sans le plasmide.
Génie génétique
-9-
2+
Que se passe-t-il ? Les ions Ca
interagissent aussi avec les groupes
phosphates de l’ADN chargés négativement, ce qui leur permet de migrer vers la
membrane des bactéries, en l’absence de répulsions dues aux charges
électriques.
3. Laissez reposer les tubes 1 et 2 dans la glace pendant 15 minutes.
*En attendant, profitez-en pour effectuer la première étape du protocole de « croissance des bactéries transformées » (page
12).
4. Au bout de 15 minutes, placez les tubes 1 et 2 dans le bain-marie à 42 ºC pendant exactement
1 minute et 30 secondes.
Que se passe-t-il ? L’ADN circulaire ou plasmide pénètre à
travers les pores de certaines bactéries. Comment ? À 42 ºC,
l’élasticité de la membrane des bactéries augmente, ce qui
favorise l’entrée du plasmide à travers les pores.
Génie génétique
- 10 -
5. Replacez les tubes 1 et 2 dans la glace pendant 2 minutes.
Que se passe-t-il ? La baisse de température
provoque la stabilisation des membranes et le
plasmide ayant déjà pénétré dans la cellule par les
pores restera à l’intérieur des bactéries.
Génie génétique
- 11 -
2 — MULTIPLICATION DES BACTÉRIES TRANSFORMÉES
Après la pénétration du plasmide à l’intérieur des bactéries, il faut faire une multiplication de celles-ci
sur un milieu adapté et à une température adéquate. Compte tenu du fait que la transformation
bactérienne produit normalement un mélange présentant peu de transformations et des cellules non
transformées en abondance, une méthode permettant d’identifier les cellules ayant incorporé le
plasmide s’avère nécessaire.
Nous nous assurerons que seules les bactéries transformées se multiplient, en les faisant se multiplier
dans des boîtes de culture contenant un antibiotique. Vu que le plasmide comporte un gène qui fait
que les bactéries soient résistantes à ce médicament, seules les bactéries transformées se
développeront sous forme de colonies. À partir de ces colonies, nous pourrons continuer par la suite
uniquement la multiplication des bactéries produisant le gène d’intérêt.
Gène
Mylip
Gène de
résistance
à l’ampicilline
Ampicilline
Ampicilline
Génie génétique
- 12 -
Protocole pour la croissance des bactéries transformées
1. Étiquetez les boîtes dans lesquelles vous ferez la multiplication des bactéries. Une boîte sera la
boîte témoin contenant des bactéries sans plasmide, et l’autre sera celle dans laquelle vous
ferez la multiplication des bactéries avec le plasmide.
2. À l’aide de la micropipette de 200 µl, ajoutez 500 µl de milieu de culture bactérienne « LB »
contenant des nutriments aux tubes 1 et 2. Couvrez les tubes puis mélangez délicatement en
les tapotant avec le doigt.
3. Incubez le mélange dans le bain-marie à une température de 37 ºC pendant 30 minutes.
Que se passe-t-il ? Pendant la durée de cette phase
d’incubation, les bactéries ont le temps de se multiplier, de
manière que lors de la duplication de leur ADN elles génèrent
aussi une copie de l’ADN plasmidique contenant le gène
d’intérêt.
* En attendant la multiplication des bactéries, vous pouvez commencer la troisième étape de cet atelier qui consiste à isoler le
matériel génétique des bactéries (page 16).
Génie génétique
- 13 -
4. À l’aide de la micropipette de 200 µl (utilisez une nouvelle pointe à chaque prélèvement),
ajoutez les bactéries (100 à 200 µl) des tubes 1 et 2 aux boîtes de gélose contenant aussi
l’antibiotique ampicilline.
5. Étalez les bactéries sur la surface de chaque boîte de gélose à l’aide d’un étaleur en plastique
stérile pour chacune. Appliquez un mouvement circulaire à la boîte tout en déplaçant l’étaleur
d’avant en arrière. Fermez les boîtes avec un peu de ruban adhésif et annotez dessous vos
initiales, la date et le type de bactérie.
Génie génétique
- 14 -
6. Incubez les boîtes retournées à 37 ºC et observez le résultat obtenu le lendemain. Si vous ne
disposez pas d’un incubateur, laissez simplement les bactéries se multiplier pendant deux jours
à température ambiante.
Génie génétique
- 15 -
3 — NOUS ISOLONS LE MATÉRIEL GÉNÉTIQUE OBTENU
À partir des bactéries transformées qui se sont multipliées en formant des colonies, les scientifiques
prélèvent un échantillon et l’ensemencent sur un autre milieu de culture contenant des nutriments afin
d’en obtenir de grandes quantités. Il faut isoler par la suite le matériel génétique produit par les
bactéries, c’est-à-dire, le séparer des autres composants bactériens tels que l’ARN, l’ADN de la
bactérie ou les protéines. Pour isoler le plasmide, les scientifiques suivent un protocole connu sous le
nom de Miniprep. Cette technique permet de séparer l’ADN sous forme de plasmide au moyen de
différents solvants et de centrifugations, qui écartent les différents composants cellulaires.
L’ADN purifié sera très utile pour les scientifiques pour mener à bien des expériences ultérieures afin
d’étudier sa fonction dans la régulation du cholestérol et dans l’athérosclérose et de mettre au point de
nouveaux médicaments.
Compte tenu du fait que le processus de multiplication de grandes quantités de bactéries nécessite
plus d’un jour et demi, nous utiliserons pour l’atelier une culture préalablement préparée par les
moniteurs.
SOLUTION 2
CHLOROPAN
SOLUTION 2
Génie génétique
- 16 -
ÉTHANOL
Gène
Mylip
Gène de
résistance
à
l’ampicilline
Protocole pour purifier l’ADN plasmidique de la culture bactérienne
(Miniprep)
1. Centrifugez le tube de culture bactérienne à la vitesse maximale pendant 30 secondes, puis
éliminez le liquide surnageant.
Que se passe-t-il ? Les cellules se séparent du
milieu de culture dans lequel elles se sont
multipliées, qui contient normalement des restes de
cellules et d’autres molécules que nous voulons
éliminer.
2. Éliminez ensuite le liquide surnageant et remettez en suspension le précipité avec 100 µl de la
solution 1 à l’aide de la micropipette de 200 µl, puis mélangez avec la même pipette.
Que se passe-t-il ? Les bactéries sont remises en suspension pour continuer la purification,
mais à une concentration plus élevée car elles seront dans un moindre volume. La solution 1 est
une solution tampon qui empêchera la dénaturalisation de l’ADN circulaire sous forme de
plasmide, qui se produit si le pH dépasse 12,6.
3. Ajoutez 200 µl de la solution 2 puis mélangez délicatement par retournement.
Que se passe-t-il ? La solution 2, contenant
un détergent, détruit les membranes de
phospholipides des bactéries, libérant ainsi
SOLUTION 2
l’ensemble du contenu cellulaire dans le milieu,
grâce à un processus appelé « lyse
bactérienne ». Cette solution contient aussi
une base forte (hydroxyde de sodium, NaOH)
qui provoque la dénaturalisation des protéines
impliquées dans le maintien de la structure de
la membrane cellulaire du propre ADN de la
bactérie. En revanche, l’ADN plasmidique n’est
pas affecté en raison du pH inférieur à 12,6.
Génie génétique
- 17 -
4. Ajoutez 150 µl de la solution 3 puis mélangez par retournement.
Que se passe-t-il ? La solution 3 est une solution
acide d’acétate de sodium, permettant de neutraliser
SOLUTION 3
le pH de la solution et d’interrompre le processus de
lyse. Au cours de cette étape, la plus grande partie
du contenu cellulaire, tel que les protéines et les
phospholipides des membranes ainsi que le propre
ADN de la bactérie, précipite pour former un précipité
blanc. Le propre ADN de la bactérie, déjà dénaturalisé, forme un complexe insoluble qui précipite,
+
grâce au fait que les ions K se lient aux groupes phosphates de l’ADN, neutralisant ainsi leur charge
négative.
5. Ajoutez 350 µl de chloropan, mélangez bien par retournement puis centrifugez pendant 3
minutes à la vitesse maximale pour séparer le plasmide contenant le gène de la Mylip.
Que se passe-t-il ? Cette étape permet de séparer
l’ADN plasmidique des autres contenus cellulaires tels
que les protéines, les lipides et d’autres acides
CHLOROPAN
nucléiques. Le chloropan est un mélange de solvants
organiques contenant du phénol et du chloroforme.
Ces solvants dissolvent les molécules hydrophobes,
telles que les lipides de la membrane, et dénaturalisent
les protéines en les rendant insolubles dans l’eau. Lors
de la centrifugation, nous séparons le mélange en deux phases : les phospholipides et les protéines
cellulaires restent en solution dans la phase inférieure de chloropan ou attrapées dans l’interphase
entre les deux phases sous forme d’un précipité blanc. L’ADN plasmidique restera dans la phase
aqueuse supérieure, car ses charges électriques n’ont pas été neutralisées, et il est donc soluble dans
l’eau.
6. Transférez la phase aqueuse supérieure transparente dans un nouveau tube à l’aide de la
pipette de 200 µl.
Génie génétique
- 18 -
7. Ajoutez 900 µl d’éthanol à 100 % à l’aide de la pipette de 200 µl, puis mélangez bien. L’éthanol
provoque la précipitation de l’ADN plasmidique de la solution aqueuse.
ÉTHANOL
Gène
Mylip
Gène de
résistance
à l’ampicilline
8. Centrifugez pendant 5 minutes à la vitesse maximale. Observez le précipité qui est l’ADN sous
forme de plasmide.
9. Enlevez la TOTALITÉ de l’éthanol à l’aide de la pipette de 200 µl.
10. Remettez en suspension le précipité d’ADN plasmidique dans 20 µl d’H2O purifiée.
Génie génétique
- 19 -
Résultats et discussion
1. Faites un schéma du processus de transformation bactérienne et expliquez à quoi il sert dans la
ligne de recherche de la mise au point de nouveaux médicaments contre l’athérosclérose.
2. Expliquez, à l’aide d’un schéma, ce qu’est un choc thermique.
3. Pour que les bactéries se multiplient, vous devez utiliser une boîte de culture contenant un
antibiotique. Pourquoi ?
4. Qu’est-ce qu’une colonie de bactéries ?
5. Dans laquelle des deux boîtes ensemencées, la boîte témoin ou celle des bactéries
transformées, obtiendrez-vous des colonies ? Pourquoi ?
Génie génétique
- 20 -
6. À partir des colonies qui se sont formées, comment obtient-on de multiples copies du gène
d’intérêt ?
7. Comment peut-on faire précipiter l’ADN bactérien et l’ADN d’intérêt ? Complétez l’explication à
l’aide d’un schéma.
8. Vous avez réussi à isoler de multiples copies de l’ADN d’intérêt grâce à la technique de
séparation appelée « Miniprep ». Que font les scientifiques après avoir obtenu cet ADN ?
Chercheurs ayant contribué avec des contenus : Theresa León, Jonathan Matalonga, Université
de Barcelone
AUTEUR
FINANCÉ PAR :
MEMBRES DU CONSORTIUM :
Cet ouvrage est sous une licence Attribution-NonCommercial-NoDerivs 3.0 Unported de Creative
Commons. Pour voir une copie de cette licence, visitez http://creativecommons.org/licenses/by-nc-nd/3.0/
Génie génétique
- 21 -
Téléchargement