LFA$/$Terminale$S$$$$Module$algorithmique$$$Mme$MAINGUY$
Algorithmique
séquence 3
Approcher une solution d’équation:
méthode de Lagrange
!
!
!
"#$%&'()!´!*++,-&.%,!/0!1-/2'(-3!4523%!6720'(-3!8!/50(4%!4523!/-9(&(%/!4%!96-:6',(%!4;30:(72%<!+2(1!8!/50(4%!4523!!
!!!+,-9,0::%=!
!
Avec%un%logiciel%de%%géométrie%dynamique% %
>-('!
!/0!)-3&'(-3!46)(3(%!12,!
=!
@-21!0//-31!04:%'',%!+-2,!/%!:-:%3'!72%!/56720'(-3!
!04:%'!23%!23(72%!1-/2'(-3!4031!/5(3'%,A0//%!
=!
Remarque%:!8!/0!)(3!42!&.0+(',%<!A-21!102,%B!'-21!46:-3',%,!&%!,612/'0'!C!
!
1) >2,!D%-9%#,0<!',0&%,!/0!&-2,#%!
!450#1&(11%1!,%1+%&'(A%1!
=!
2) E-31',2(,%!/%!+-(3'!45(3'%,1%&'(-3!42!1%9:%3'!
!1-3!0#1&(11%=!
3) E-31',2(,%!
<!+2(1!/%!+-(3'!45(3'%,1%&'(-3!4%!
=!
4) G6('6,%,!/%!+,-&646!$217258!+-2A-(,!4-33%,!23%!A0/%2,!0++,-&.6%!4%!
=!!
"3!+-2,,0!A6,()(%,!/0!&-.6,%3&%!42!,612/'0'!8!/50(4%!4%!/0!&0/&2/0',(&%<!%3!&.%,&.03'!23%!A0/%2,!0++,-&.6%!4%!/0!
1-/2'(-3!4%!/56720'(-3!