Energie, puissance et production d`énergie

publicité
Energie, puissance et production d’énergie
Le skateur
Un skateur part, à l’arrêt du haut de la rampe d’un skate parc de hauteur 5 m. La masse du skateur
est de 50 kg (on prendra g=10 pour l’accélération de la pesanteur).
Tous les frottements sont négligeables.
;
Quel transfert d’énergie se réalise lorsqu’il s’élance dans la rampe ?
Que vaut la somme de ces deux énergies ? Justifier.
Quelle est sa vitesse au bas de la pente ?
Peut-il remonter en haut de la pente en face de lui (de même hauteur que celle qu’il vient de
descendre) ?
Que doit-il faire pour remonter cette pente si les frottements ne sont plus négligeables ?
Puissance et énergie
Pour chauffer une pièce d’habitation, on utilise un radiateur électrique de puissance 1 kW ; pour
arriver de la température de départ de 15°C à celle d’arrivée de 20°C, le radiateur doit fonctionner
pendant 2h de manière continue.
Sachant que le distributeur d’énergie facture le kWh à 0,1 € , combien coutera l’opération ?
Pour chauffer la pièce, on utilise maintenant un radiateur de 2 kW ; on supposera que pour chauffer la
pièce, le radiateur doit fonctionner en continu pendant 1h.
Quel sera le prix de l’opération ?
Une fois la pièce à 20°C, pour maintenir la tempéra ture, le radiateur de 2 kW fonctionne en
intermittence pendant un quart du temps grâce à son thermostat.
A combien revient une journée de chauffage ?
Une centrale hydraulique
La figure suivante propose un schéma simplifié détaillant une centrale hydraulique :
Une retenue d’eau permet de faire circuler de l’eau dans une conduite forcée, ce qui a pour effet de
faire tourner une turbine.
Denis Rabasté
IUFM Aix Marseille
1/8
Celle-ci entraine un alternateur qui produit de l’énergie électrique.
Pour une raison que nous verrons par la suite, la tension de cette énergie sera élevée par un
transformateur afin d’être acheminée vers les lieux de consommation où elle sera abaissée de
nouveau au potentiel de 230 V par un autre transformateur, afin d’être utilisé dans des conditions de
sécurité acceptables.
D’après http://rascol.free.fr/2A_99_2000/hydro/les_centrales_hydro.htm
Donner les différentes transformations que subit l’énergie dans ce processus ; on précisera à
chaque fois où se trouve l’énergie et sous une forme donnée (on utilisera les termes suivants :
retenue d’eau, conduite forcée, turbine, alternateur, transformateur).
On supposera dans une première approximation, que la totalité de l’énergie potentielle de l’eau se
retrouve au niveau de la turbine.
L’alternateur est par contre le siège de pertes :
frottement au niveau de l’axe de rotation ;
échauffement dans les conducteurs en cuivre et matériaux magnétique.
On estime que pour une puissance de 100 kW entrant au niveau de l’alternateur via la turbine, 10 kW
passent en pertes diverses.
Quelle puissance se retrouve alors en sortie sous forme électrique ? Justifier votre réponse.
On détermine le rendement d’un appareil par le quotient de la puissance de sortie sur celle d’entrée.
Entre quelles valeurs peut être compris un rendement ?
Calculer celui de l’alternateur.
Le transformateur a un rendement de 95%.
Proposer un schéma faisant apparaître les puissances en entrée et en sortie dans les différents
éléments de la centrale. On précisera le rendement de chaque élément.
A partir de la définition du rendement énoncée plus haut, montrer que le rendement global de
la centrale est le produit des rendements de chaque élément.
L’énergie fournie par le barrage est elle renouvelable ?
Y a-t-il génération d’une pollution pour la produire ?
Citer d’autres exemples où l’eau permet de produire de l’énergie électrique.
Transport de l’énergie électrique
Nous avons pu que constater que la centrale précédente intégrait un dispositif, nommé
transformateur, permettant d’élever la tension électrique.
Denis Rabasté
IUFM Aix Marseille
2/8
La puissance électrique peut s’exprimer sous la forme :
P=k.U.I
- U étant la tension en volts ;
- I le courant en ampères ;
- P la puissance en watts ;
- k un facteur que l’on considérera constant dans cette approximation.
Comme on peut le voir sur la figure suivante, les lieux d’utilisation et de production sont souvent
éloignés ce qui nécessite un transport, parfois sur plusieurs milliers de km, sur des lignes électriques.
La circulation d’un courant dans une ligne électrique crée un échauffement dans la résistance R de la
ligne, engendrant une perte de puissance proportionnelle à R.I², la résistance R étant d’autant plus
importante que la ligne est longue.
La figure suivante montre que la tension subit plusieurs transformations, délimitant ainsi plusieurs
zones :
le réseau basse tension de production et d’utilisation à 230 V par exemple.
le réseau moyenne tension (aujourd’hui nommée HTA) à 20 kV par exemple ;
le réseau haute tension (aujourd’hui nommé HTB) à 220 kV par exemple.
D’après http://www.energies-services.org/page411-409-le-transport-d-electricite.html
Pourquoi éloigne-t-on les lieux de production de ceux de consommation ?
En supposant le rendement des transformateur unitaire, justifier ces changements de tension
successifs.
Exemple de transformateur et centrale de transformation.
Centre de distribution local
Gros plan d’un transformateur du
centre de distribution
D’après http://perso.id-net.fr/~brolis/softs/domodidac/transfo.html
Denis Rabasté
IUFM Aix Marseille
Transformateur
quartier
3/8
de
Une centrale thermique
La figure suivante schématise le principe de fonctionnement d’une centrale à charbon.
D’après http://perso.id-net.fr/~brolis/softs/domodidac/transfo.html
Expliquer les différentes formes que prend l’énergie, avant d’arriver sous forme électrique
(remarque : la partie « transformation haute tension » n’a pas été représentée ici)
L’énergie d’un kilogramme de charbon est estimée à 4 kWh et le rendement (rapport entre l’énergie
électrique fournie et l’énergie primaire fournie) d’une centrale thermique à vapeur à environ 40% .
La figure suivante schématise une centrale nucléaire. Son rendement est estimé à 30% et l’énergie
primaire disponible dans un kilogramme d’uranium à 50 000 kWh.
Expliquer le fonctionnement et comparer par rapport à une centrale thermique classique.
Quelle énergie mécanique dans un kWh ?
On souhaite monter une charge d’une tonne (1000 kg) en haut de la tour Effel (324 m). On dispose
pour cela d’un treuil et d’un moteur électrique, le rendement de l’ensemble étant de 88% (on prendra
9,8 m/s² pour g).
Déterminer l’énergie nécessaire à l’opération (en Joule puis en kWh).
Denis Rabasté
IUFM Aix Marseille
4/8
Combien de temps sera nécessaire pour effectuer l’opération, avec un moteur de 1 kW ? avec
un moteur de 10 kW ?
L’énergie d’un kilogramme d’orange
Albert Einstein à démontré avec la théorie de la relativité, qu’il y avait une équivalence entre l’énergie
et la matière, donnée par la relation :
E=m.c²
où « E » représente l’énergie équivalente en Joules à la masse « m » en kg, « c » étant la vitesse de
la lumière 3.108 m/s.
En supposant, ce qui est loi d’être le cas, que l’on sache extraire toute l’énergie d’un kg de
matière (1kg d’orange par exemple), quelle quantité d’énergie aurions nous alors ?
La consommation électrique annuelle en France étant estimée à 500 TWh, pendant combien de
temps pourrions nous alimenter ce pays en électricité ?
Citez des exemples où une partie de cette transformation matière énergie est réalisée.
L’expérience de Joule
En 1842 James Prescott Joule a voulu montrer l’équivalence entre l’énergie potentielle et l’énergie
calorifique ; il a utilisé pour cela le dispositif suivant, pouvant être schématisé par la figure de droite :
D’après
et
http://www.ac-nancy-metz.fr/enseign/physique/phys/bts-main/Cours_1.pdf
http://fr.wikipedia.org/wiki/Exp%C3%A9rience_de_Joule
et
Expliquer le principe de cette expérience.
Calculer l’énergie potentiel au début de l’expérience et à la fin. Quelle est la variation d’énergie
potentielle ?
Qu’est devenue cette énergie.
On sait que l’accroissement de chaleur (d’énergie) Q reçu par un liquide de masse M vaut :
Q=M.C.∆T,
où C représente la capacité thermique massique du liquide (4180 pour l’eau),
et ∆T l’accroissement de température (attention de ne pas confondre m la masse du solide et M
la masse de l’eau).
Quel accroissement de température doit mesurer le thermomètre si h vaut 10 m (on prendra
g=10 m/s²), m=10 kg, le liquide étant 1 litre d’eau ?
Que se passe t-il si on remonte la masse avec la poignée ?
Denis Rabasté
IUFM Aix Marseille
5/8
Eléments de correction
Le skateur
Quel transfert d’énergie se réalise lorsqu’il s’élance dans la rampe ?
Energie potentielle vers cinétique
Que vaut la somme de ces deux énergies ? Justifier.
Elle est constante et égale à l’énergie potentielle de départ
Quelle est sa vitesse au bas de la pente ?
En bas de la pente, toute l’énergie potentielle de départ soit 50x10x5=2500J a été convertie en
énergie cinétique, donc 1/2 x 50 . v²=2500J, d’où v²=100, donc v=10 m/s
Peut-il remonter en haut de la pente en face de lui (de même hauteur que celle qu’il vient de
descendre) ?
Oui si on néglige les frottements divers qui causent des pertes d’énergie
Que doit-il faire pour remonter cette pente si les frottements ne sont plus négligeables ?
Donner une impulsion au départ pour augmenter l’énergie cinétique
Puissance et énergie
Sachant que le distributeur d’énergie facture le kWh à 0,1 €, combien coutera l’opération ?
1kW x 2h = 2 kWh soit 0,2€
Quel sera le prix de l’opération ?
2 kW. 1h =2kWh soit 0,2€
A combien revient une journée de chauffage ?
La consommation est de 24h/4 .2kW=12kWh, soit un prix de 1,20 €
Une centrale hydraulique
Donner les différentes transformations que subit l’énergie dans ce processus ; on précisera à
chaque fois où se trouve l’énergie et sous une forme donnée (on utilisera les termes suivants :
retenue d’eau, conduite forcée, turbine, alternateur, transformateur).
L’énergie se trouve sous forme potentielle dans la retenue d’eau,
Sous forme cinétique dans la conduite forcée,
Sous forme de travail d’une force (ou d’un couple) au niveau de la turbine,
Sous forme électrique à la sortie de l’alternateur, à l’entrée et la sortie du transformateur
Quelle puissance se retrouve alors en sortie sous forme électrique ? Justifier votre réponse.
On retrouve 100-10=90kW à la sortie de l’alternateur (rien ne se perd rien ne se crée)
Entre quelles valeurs peut être compris un rendement ?
Entre 0 et 1 (soit de 0 % à 100%)
Calculer celui de l’alternateur.
90/100=0,9=90%
Proposer un schéma faisant apparaître les puissances en entrée et en sortie dans les différents
éléments de la centrale. On précisera le rendement de chaque élément.
Denis Rabasté
IUFM Aix Marseille
6/8
Puissance
électrique Pe2
Energie
électrique Ee2
Transformateur
(η=95%)
Puissance
mécanique Pm1
Lac de
retenue
Conduite
forcée
Energie
potentielle
Ep
Turbine
(η=100%)
Energie
cinétique Ec
Puissance
électrique
Puissance Pe1
mécanique
Pm2
Energie de
travail d’une
force Etf
Energie
électrique
Ee1
Alternateur
(η=90%)
A partir de la définition du rendement énoncée plus haut, montrer que le rendement global de
la centrale est le produit des rendements de chaque élément.
L’énergie potentielle ne correspondant pas à une puissance (car non encore utilisée), il est plus
simple de raisonner en énergie, le rendement en puissance ou en énergie étant le même dans notre
cas.
Rendement global :Ee2/Ep=Ee2/Ee1 x Ee1/Etf x Etf/Ec x Ec/Ep = 0,95 x 0,90 x 1 x1 = 0,855 soit
85,5%
L’énergie fournie par le barrage est elle renouvelable ?
Oui car l’eau retournera au barrage par le cycle naturelle de l’eau
Y a-t-il génération d’une pollution pour la produire ?
Une fois le barrage construit, seul l’entretien génère pollution (déplacement des ouvriers de
maintenance, produits et matériels d’entretien etc…).
La construction impose par contre de fortes contraintes à l’environnement (inondation d’une zone,
perturbation de la migration des divers animaux etc...) et aux hommes (voir la construction du barrage
d’Assouan)
Citer d’autres exemples où l’eau permet de produire de l’énergie électrique.
Usine marée motrice, hydroliennes, utilisation de l’énergie des vagues (Pélamis)
Transport de l’énergie électrique
Pourquoi éloigne-t-on les lieux de production de ceux de consommation ?
En supposant le rendement des transformateur unitaire, justifier ces changements de tension
successifs.
Les centrales de production sont éloignées de zones d’habitation :
pour des raisons environnementales (le barrage est à la montage, la ville plutôt dans le plaines, la
centrale nucléaire a besoin d’un fleuve pour le refroidissement) ;
pour des raisons de santé (une centrale thermique rejette beaucoup de CO2) ;
pour éviter des peurs injustifiées (mais alors complètement injustifiées –ça n’arrive qu’aux
ukrainiens et japonais-) vis-à-vis du nucléaire ;
La production doit se faire sous des tensions basses, car le matériel ne supporterait pas les très
hautes tensions ;
L’utilisation doit se faire en basse tension (230 V par exemple) pour des raisons de sécurité.
Les pertes dans le transport de la zone de production à celle d’utilisation, créera d’autant plus de
pertes RI² que le courant sera important. Pour une puissance donnée, P=kUI, on a donc intérêt à avoir
un courant faible et une tension élevée.
Le transformateur permet d’élever ou d’abaisser la tension, le courant évoluant pour maintenir la
même puissance (pas de création de puissance dans le transformateur, et peu de pertes)
Plus la distance est importante, plus il est intéressant d’élever la tension
Denis Rabasté
IUFM Aix Marseille
7/8
Une centrale thermique
Expliquer les différentes formes que prend l’énergie, avant d’arriver sous forme électrique
(remarque : la partie « transformation haute tension » n’a pas été représentée ici)
Energie chimique dans le combustible
Energie thermique dans la chaudière
Energie cinétique dans les conduites
Travail d’une force (de la vapeur) au niveau de la turbine
Energie électrique en sortie de l’alternateur
L’énergie d’un kilogramme de charbon est estimée à 4 kWh et le rendement (rapport entre l’énergie
électrique fournie et l’énergie primaire fournie) d’une centrale thermique à vapeur à environ 40% .
La figure suivante schématise une centrale nucléaire. Son rendement est estimé à 30% et l’énergie
primaire disponible dans un kilogramme d’uranium à 50 000 kWh.
Expliquer le fonctionnement et comparer par rapport à une centrale thermique classique.
Le principe de fonctionnement est le même, à la différence que l’eau du circuit secondaire est
chauffée par l’eau du circuit primaire, qui est elle-même chauffée par l’énergie nucléaire.
Quelle énergie mécanique dans un kWh ?
Déterminer l’énergie nécessaire à l’opération (en Joule puis en kWh).
L’énergie potentielle nécessaire vaut 1000 kg . 9,8 . 324 m =3,15 MJ
L’énergie à fournir au moteur vaut 3,17MJ/0,88=3,6 MJ soit 1kWh
Faire fonctionner un radiateur de 1 kW pendant une heure consomme la même énergie que pour
monter une tonne en haut de la tour Effel.
L’énergie d’un kilogramme d’orange
En supposant, ce qui est loi d’être le cas, que l’on sache extraire toute l’énergie d’un kg de
matière (1kg d’orange par exemple), quelle quantité d’énergie aurions nous alors ?
1kg .(3 .108)²=9 . 1016J
Soit 9 . 1016 J / 3,6 106 = 2,5 1010 kWh =2,5 . 1013 Wh
La consommation électrique annuelle en France étant estimée à 500 TWh, pendant combien de
temps pourrions nous alimenter ce pays en électricité ?
On pourrait alimenter la France pendant 2,5 1013 Wh / 500 1012 Wh/an= 0,05 an soit 18 jours
Citez des exemples où une partie de cette transformation matière énergie est réalisée.
Etoiles, centrales nucléaires, bombes atomiques
L’expérience de Joule
Expliquer le principe de cette expérience.
L’énergie potentielle de la masse va se transformer en chaleur et élever la température de l’eau
lorsque la masse va descendre.
Calculer l’énergie potentiel au début de l’expérience et à la fin. Quelle est la variation d’énergie
potentielle ?
E=mgh
Qu’est devenue cette énergie.
Elle se transforme en chaleur.
Quel accroissement de température doit mesurer le thermomètre si h vaut 10 m (on prendra
g=10 m/s²), m=10 kg, le liquide étant 1 litre d’eau ?
E=mgh=10kg.10m/s².10m et E= MC∆T=1kg. 4180. ∆T
d’où ∆T=1000/4180=0,24°C
Que se passe t-il si on remonte la masse avec la poignée ?
On échauffe l’eau de nouveau
Denis Rabasté
IUFM Aix Marseille
8/8
Téléchargement