La courbure de lespace
Du Temps, de lEspace et des Hommes , Jean E. CHARON (Seuil, Paris, 1962)
TEXTE et TEST
La courbure de lespace Par Jean E. CHARON
2
Ecrire sous la dictée ou compléter en vous aidant de la liste de mots proposés ci-
dessous (tous à utiliser) :
La courbure de l’espace
(1) ________________ 1915, ce problème de savoir si notre Univers était fini ou
infini comportait une (2) ______________ “évidente” : l’espace était considéré comme
n’ (3)___________ aucune propriété physique, il ne constituait qu’un “cadre” aux
phénomènes physiques (4) _____________________. En ce (5) _____________, le
concept d’une “droite”, par exemple, (6) __________________ parfaitement clair, car ce
concept semblait indépendant de la nature du cadre (7) __________ traçait cette
droite. Une droite était finie par la géométrie euclidienne comme une ligne sans
courbure ”, il ne (6) __________________ faire aucun doute que si (7) ________ traçait
une droite dans le cadre spatial, (8) ________________ pourrait être aussi longue que
(7) ________ désirerait ; en d’autres termes, un voyageur circulant le long de cette droite
n’arriverait jamais au bout ”. La réponse à notre problème était donc
(8) ________________ : l’Univers (9) _______________ à l’infini dans
(10) ____________ les directions.
Du Temps, de l’Espace et des Hommes , Jean. E. CHARON (Seuil, Paris, 1962)
Liste des mots manquant dans le texte :
ayant
celle-ci / celle-ci
directions / eux-mêmes / Jusqu’en
l’on / l’on / l’on
paraissait / paraissait
réponse / s’étend / sens
Corrigé : 1er paragraphe du grand texte (la page 9 du document vous aidera à fixer ces mots )
La courbure de lespace Par Jean E. CHARON
3
TEST
___________________________________________________________________________
1
…………………
La courbure de l’espace
Jusqu’en 1915, ce problème de savoir si notre Univers était fini ou infini comportait une
réponse “évidente” : l’espace était considéré comme n’ayant aucune propriété physique, il ne
constituait qu’un “cadre” aux phénomènes physiques eux-mêmes. En ce sens, le concept d’une
“droite”, par exemple, paraissait parfaitement clair, car ce concept semblait indépendant de la nature
du cadre où l’on traçait cette droite. Une droite était définie par la géométrie euclidienne comme une
ligne sans courbure ”, il ne paraissait faire aucun doute que si l’on traçait une droite dans le cadre
spatial, celle-ci pourrait être aussi longue que l’on désirerait ; en d’autres termes, un voyageur
circulant le long de cette droite n’arriverait jamais au bout ”. La réponse à notre problème était
donc celle-ci : l’Univers s’étend à l’infini dans toutes les directions.
2
Mais, en 1915, Albert Einstein développe la théorie de la Relativinérale. Après avoir
montré, avec la Relativité Restreinte, qu’espace et temps formaient un continuum indissoluble,
Einstein nous montre, avec la Relativité Générale, qu’espace et matière forment, eux aussi, un
continuum indissoluble : car la matière agit sur la nature de l’espace, elle est capable de courber
cet espace . L’analogie avec une surface (au lieu d’un volume spatial) permet de mieux comprendre
ce qu’Einstein veut dire : l’espace vide de matière serait comme un plan et s’étendrait donc à
l’infini dans toutes les directions portées par cette surface ; mais notre Univers réel contient de la
matière et cela a pour effet de courber l’espace, c’est-à-dire, ici, la surface plane qui représente cet
espace. Il est alors possible que cette surface vienne se refermer sur elle-même, comme la
surface d’une sphère par exemple. Une telle surface “ fermée ” offre la propriété d’être à la fois finie
et illimitée. Elle est finie puisqu’on peut mesurer l’aire de cette surface ; elle est illimitée car,
comme on le voit, on ne viendra jamais “ buter ” sur une limite ; dans le cas de la surface sphérique,
par exemple, si l’on marche toujours droit devant soi en demeurant sur la surface, on finit par
revenir à son point de départ. D’après Einstein et la Relativité Générale il pourrait en être de même
pour l’espace de notre Univers : il pourrait être à la fois fini et illimité. Un voyage en ligne droite
nous ramènerait à notre point de départ.
3
Cette possibilité d’une courbure de l’espace a souvent paru étrange, et même suspecte, à
un grand nombre d’esprits, physiciens ou non. On a parfois voulu y voir un simple formalisme
mathématique utilisé par Einstein pour sa théorie de la gravitation, mais sans correspondance
directe avec la réalité physique. Cette difficulté à imaginer ce que peut vraiment être un
espace courbé provient du fait que chacun de nous est encore profondément imprégné par la
géométrie d’Euclide, qui nous a fait faire nos premiers pas en géométrie au cours de nos études
secondaires. On nous a présenté alors le célèbre postulat des parallèles qui ne se rencontrent
jamais comme une hypothèse pratiquement déduite de façon évidente de l’expérience. L’enfant en
arrive donc rapidement à imaginer que tous les théorèmes déduits de la géométrie d’Euclide peuvent
La courbure de lespace Par Jean E. CHARON
4
décrire rigoureusement des situations géométriques dans notre espace physique réel. Cet état de
choses fait qu’ensuite, lorsque l’enfant aura atteint l’âge mûr, il lui sera absolument impossible de
concevoir ce qu’on entend réellement par un espace courbé les parallèles finissent par se
rencontrer.
4
Essayons de prendre l’exemple très simple d’une droite, et cherchons à raisonner dans notre
espace physique seulement (indépendamment de tout postulat du type de celui d’Euclide). Je
demande donc à quelqu’un (que j’appelle X) de m’expliquer comment il va réaliser matériellement
ce qu’il entend par une ligne “ droite dans notre espace physique. La première réaction de X, s’il a
bien compris les leçons sur la ométrie d’Euclide, va être de chercher à réaliser une droite comme
un corps matériel placé dans le cadre de l’espace, mais indépendant de ce cadre : X va donc prendre
une règle droite et il me dira que ceci matérialise pour lui un segment de droite. Je demande
alors à X de me représenter une droite plus longue ; il me répondra, fort justement, qu’il lui
suffit pour cela de prendre autant de règles “ droites ” qu’il faudra et de les mettre bout à bout ”. Je
demande maintenant à X si cette longue ligne droite présente une courbure ; il me dira que non,
bien entendu, car chacune des règles droites qui lui ont servi à construire sa ligne droite ne
possédait aucune courbure : la somme des règles mises bout à bout n’en présente donc pas non plus.
5
(paragraphe auquel il manque les mots : dont entre lui pour soi )
Je m’avise alors qu’il convient de poser à X une question plus délicate : comment s’est-il
assuré que la règle il se sert construire sa ligne droite est vraiment droite ? Après quelques
réflexions , X finira par me déclarer que sa règle est droite parce qu’elle coïncide parfaitement
avec une ficelle tendue entre les deux extrémités de la règle ; comme je dirai alors que je ne suis pas
assuré que la ficelle elle-même, ainsi tendue, vraiment parfaitement droite, X conviendra, de
guerre lasse, et avec quelque énervement, que sa ficelle est droite “ par définition ” parce qu’elle est
le plus court chemin les deux extrémités de la règle.
6
Mais voilà alors le grand mot lâché : par définition ; autrement dit, par définition, la
droite est le plus court chemin entre deux points (sous-entendu :choisis dans l’espace physique). X
convient alors avec moi qu’il ne sait nullement comment est une droite dans l’espace physique
s’il ne sait pas au préalable comment est fait cet espace physique. Une image va immédiatement
éclairer ce point : si, en pays de montagne, je recherche, le plus court chemin entre deux points
(c’est-à-dire l’analogie de notre définition de la droite) je ne suis pas sûr du tout qu’il s’agira d’un
chemin (d’une ligne) sans courbure ; en fait, il n’y a guère que dans un pays de plaine que le plus
court chemin entre deux points est, très sensiblement, une ligne sans courbure. Il en va de même
dans notre espace physique : je suis dans l’impossibilité d’affirmer que je serais capable de tracer
dans cet espace une droite (avec la définition que nous avons acceptée) sans courbure ; pour
répondre, il me faut au préalable savoir comment est constitué l’espace physique dans lequel je
me propose de tracer ma droite ; et, si cet espace physique est lui-même courbé, quand je
croirai ”tracer une droite sans courbure (en parcourant le plus court chemin entre deux points) je
tracerai, en fait, une droite courbée. Cela n’a donc rien de mystérieux, il faut bien se rendre
compte que cela n’a aucun sens physique de parler de la disposition géométrique d’objets dans
notre espace comme si cet espace était l’espace idéal (mais sans réalité physique) de la géométrie
d’Euclide : dans le réel une “ droite ” de l’espace n’est jamais rigoureusement sans courbure.
La courbure de lespace Par Jean E. CHARON
5
7
Il est fort regrettable que ces notions ne soient pas inculquées aux enfants dès les études
secondaires car, comme nous l’avons déjà dit, ils ont ensuite des difficultés à se représenter un
espace courbé ”, alors qu’il s’agit là, en fait, de quelque chose de parfaitement naturel qui est la
règle (qui ne souffre d’ailleurs aucune exception) lorsqu’il s’agit de notre Univers physique réel, et
qui n’est donc nullement une construction abstraite de l’esprit, comme l’est, par contre, la géométrie
d’Euclide.
de : Du Temps, de l’Espace et des Hommes , Jean. E. CHARON (Seuil, Paris, 1962)
Paragraphe 1
- il ne constituait qu’un “cadre” aux phénomènes physiques eux-mêmes.
-écrire la phrase ci-dessus en exprimant la partie en caractères gras d’une autre manière
________________________________________________________________________________
________________________________________________________________________________
Paragraphe 2
Relever trois expressions de la comparaison :
_____________________________
_____________________________
_____________________________
Relever trois expressions de la cause (autres que des verbes) :
_____________________________
_____________________________
_____________________________
Paragraphe 3
Relever cinq expressions de localisation dans le temps :
_____________________________
_____________________________
_____________________________
_____________________________
_____________________________
1 / 9 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !