Université de Nantes
Master 2 Histoire des sciences et des techniques
Histoire de la mécanique - Balistique et chute des corps (UEC5)
Cours de Evelyne Barbin
Cours 1 - Les mouvements dans la Physique d'Aristote (IVe siècle avant J.-C)
Aristote définit la science comme la possession d’une démonstration partant de prémisses. Sa
Physique (nature) fait partie des « sciences théoriques », qui ne fabriquent pas mais qui
contemplent les choses : il faut se poser devant les phénomènes de la nature la question du
pourquoi, c’est-à-dire en déterminer les causes. Nous examinons la définition du mouvement,
les difficultés du traitement du mouvement (lieu, vide, temps et continu) ainsi que la
classification des mouvements par les causes, dont héritent ses successeurs jusqu’à Galilée.
Cours 2 - Archimède et les mécaniciens grecs
Nous analysons deux traités de statique d’Archimède : le premier donne la loi de l’équilibre
d’une machine simple, qui est la balance, et le second donne une loi sur l’immersion d’un
corps flottant. Les traités d’Archimède auront une grande influence à la Renaissance
européenne et dans les conceptions de Galilée. Nous examinons aussi les travaux d’autres
mécaniciens grecs, et en particulier le mouvement sur un plan incliné dans la Collection
mathématique de Pappus d’Alexandrie (IVe siècle).
Cours 3 - Mécanique et mouvements aux XIIIe et XIVe siècles
Les XIIIe et XIVe siècles occidentaux bénéficient d’un héritage grec et arabe. Les textes
connus sont les traités d'Aristote, les Problèmes mécaniques du pseudo-Aristote, le Livre
d'Euclide sur le grave (et le léger) qui est la version latine d'un texte arabe anonyme, et le
Livre de la balance, qui est la version latine d’un ouvrage de Thabit ben Qurra du IXe siècle.
Nous examinons ces traités, grec et arabe, dont le Moyen-âge occidental est héritier, puis des
livres de mécanique et des commentaires de la Physique d’Aristote des XIIIe-XIVe siècles.
Cours 4 - Mécanique des ingénieurs du XVIe siècle
À partir de la fin du XIVe siècle, le fossé entre les commentateurs de textes anciens et les
inventeurs de machines se comble, en même temps qu’apparaît le statut d’ingénieur. Les
ingénieurs se trouvent autorisés à rivaliser avec les savants. C’est ainsi que dans des textes
que nous examinerons, se trouvent confronter la théorie spéculative des mouvements héritée
d’Aristote et le questionnement soulevé par les machines. De plus, le XVIe siècle connaît les
ouvrages de l’Antiquité grecque. Pour ce qui concerne la mécanique, ce sont les traités
d'Archimède, les écrits de Pappus et d’Héron d’Alexandrie.
Cours 5 - Chute des graves au XVIe siècle. La Nouvelle science de Tartaglia et les
artilleurs
Pour répondre aux artilleurs qui cherchent à relier l’inclinaison d’un canon à sa portée,
Tartaglia publie en 1537 sa Nouvelle science. Ce n’est pas un ouvrage sur le mouvement en
général, car son but est de déterminer les trajectoires utiles aux artilleurs, ni un ouvrage
d’artilleur, mais un ouvrage scientifique organisé à la manière des Éléments d’Euclide. Il
constitue une rencontre étrange entre la doctrine ancienne, héritée d’Aristote et de l’école
scolastique, et les questionnements nouveaux.
Cours 6 - La Physique de Galilée : un questionnement nouveau
Galilée écrit vers 1590 un traité De motu, puis en 1595 un traité De mecaniche, dans lesquels
sont mêlées la philosophie aristotélicienne du mouvement et la mécanique archimédienne.
Dans les Discours concernant deux sciences nouvelles de 1638, il s’oppose à la conception
d’Aristote qui associe la science à la démonstration et la démonstration à l’usage des
syllogismes. Pour lui, les mathématiques doivent remplacer la logique et la spéculation doit se
soumettre à l’expérience. Pour lutter contre les arguments d’autorité et pour faire comprendre,
Galilée n’écrit pas dans le style euclidien, mais il compose des dialogues.
Cours 7 - Les Discours de Galilée : la chute des graves
Dans les deux premières journées des Discours, Galilée traite de questions concernant la
résistance des corps à la rupture, la chute des graves et les pendules. Les deux dernières
journées sont consacrées aux mouvements, au mouvement uniforme et au mouvement de
chute, puis au mouvement des projectiles. Le propos de Galilée est d’établir la proportion
mathématique selon laquelle se fait l’accélération, afin de donner la courbe mathématique des
projectiles, c’est-à-dire d’étudier mathématiquement les effets du mouvement.
Cours 8 - La descente sur un plan incliné. Théorèmes mathématiques et expérience chez
Galilée
Après avoir étudié le mouvement uniforme et défini le mouvement « naturellement accéléré »,
Galilée démontre les théorèmes mathématiques qui permettent de passer d’une relation entre
vitesse et temps à une relation entre distances et temps, puis les théorèmes sur le plan incliné.
Il explique ensuite que ces sultats mathématiques sont bien en correspondance avec ses
expériences sur des plans inclinés, donc que sa définition du mouvement naturellement
accéléré est bien celle dont « la nature se sert »,
Cours 9 - La trajectoire des projectiles dans les Discours
Dans la quatrième journée, Galilée considère un mobile lancé sur un plan horizontal limiet
il démontre que la trajectoire du projectile vers le bas quand il quitte le plan est une demi-
parabole. Plus loin, il calcule et dispose sous forme de table les amplitudes de toutes les demi-
paraboles que décrivent des projectiles lancés avec un même « impeto », selon le nombre de
degrés de l’angle d’élévation, c’est-à-dire le type de table recherchée par les artilleurs..
Cours 10 - Mersenne et Descartes, lecteurs de Galilée
Il est intéressant d’examiner les écrits d’un lecteur très attentif de Galilée, le Père Marin
Mersenne, qui a suivi de près ses travaux. Il publie en 1634 les Mechaniques de Galilée dont
l’original italien ne sera publié qu’après la mort de son auteur. Mersenne connaîtra aussi les
Discours de 1638, avant leur publication. Il les communique à Descartes, dont nous avons
ainsi l’opinion. Il en donne une version dans les Nouvelles pensées de Galilée, parues en
1638, où nous pouvons voir qu’il ne partage pas toutes les vues de l’Italien.
Cours 11 - Huygens et la chute des corps
Christian Huygens est un continuateur de Galilée. Il publie en 1659 un mémoire sur la force
centrifuge. Il est pensionné de l’Académie Royale des Sciences, dès sa création par Colbert en
1666, et il réalise alors des recherches sur l’explication de la pesanteur et des expériences sur
le vide et sur la résistance de l’air. Dans l’Horloge à pendule de 1673, il poursuit les travaux
de Galilée en étudiant le pendule cycloïdal et la descente sur une pente cycloïdale. Il publie
son Discours de la cause de la pesanteur en 1690.
Cours 12 - Newton et la chute des corps
Dans les Principes mathématiques de la philosophie naturelle de 1687, Newton propose une
science unifiée du mouvement, fondée sur la notion de force, et énonce une loi de gravitation
universelle valable pour la chute des graves, pour la terre et la lune, pour le soleil et les corps
célestes. Il s’attaque aussi au problème difficile de la résistance de l’air, qu’a négligé Galilée,
en examinant tour à tour l’hypothèse qu’elle est proportionnelle à la vitesse ou au carré de la
vitesse. Dans son ouvrage de 1683, L’art de jetter les bombes, le Maréchal de Camp aux
Armées du Roy François Blondel suit de près les énoncés des Discours de Galilée, ce qui
indique leur impact auprès des « hommes de l’art » quelque cinquante ans après leur parution.
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !