Bulletin 118 (septembre 2003) de l'INSTITUT DE LA MÉTHODE (Association Ferdinand Gonseth), pp. 1-8
1
Système solaire et chaos -
Mort de l'effet papillon !
Gaston Fischer, [email protected]
Rue de Rugin 1A, 2034 Peseux, Suisse
Au cours des trois dernières décennies, les mathématiques ont fait d'énormes progrès
sur plusieurs fronts nouveaux. On peut citer comme exemples la théorie des "fractals" et celle
du "chaos". Dans les deux cas ces progrès ont rapidement trouvé des applications à des
processus auxquels on n'avait d'abord pas pensé. Chacun de nous a probablement vu l'une de
ces images de kaléidoscope créées par fractals, l'image, lorsqu'on l'agrandit, révèle des
détails toujours plus fins et, dans certains exemples, toujours nouveaux. Le plus souvent on
introduit la notion des fractals en demandant quelle est la longueur d'un rivage de mer ou de
lac. On se rend alors vite compte que cette question n'a pas de réponse univoque.
En mathématiques, la notion de chaos n'est pas forcément celle du désordre complet,
celle de la foule désordonnée ou des molécules d'un gaz qui s'entrechoquent éternellement,
il serait illusoire de préciser la position de chaque personne ou molécule à tout instant. Le plus
souvent on veut simplement dire que le système n'est pas prévisible au-delà d'une certaine
limite temporelle. Dans cet ordre d'idées on a pu lire, à plusieurs reprises récemment, que
même le système solaire finira dans le chaos. Mais le cheminement par lequel ce chaos va
s'établir n'est généralement pas précisé; il vaut donc la peine de voir s'il s'agit de prédictions
alarmistes, dans le simple but de faire du sensationnalisme gratuit ou si nous pouvons
continuer de dormir en paix.
1. On ne connaît qu'imparfaitement le présent,
le futur est donc encore plus aléatoire
Il est évident qu'à très longue échéance un certain désordre va s'installer dans le
système solaire, mais cette affirmation n'a vraiment un intérêt que si l'on donne une estimation
du temps nécessaire à son instauration. L'estimation de ce temps doit être abordée sous au
moins quatre aspects. Le premier ne concerne pas une perturbation complète du système, mais
seulement un désaccord entre ce que nous pouvons prédire et l'état qui s'établira effectivement
au bout d'un certain temps. C'est un temps qui découle tout naturellement des incertitudes qu'il
y aura toujours dans notre connaissance des paramètres orbitaux de toutes les composantes
d'un système. Cela revient à dire que puisque nous ne connaissons les conditions initiales
qu'avec une précision limitée, nous ne pouvons pas faire d'extrapolations parfaites, ni vers le
futur, ni vers le passé. Ce temps, pour de petits écarts de prédiction, est au moins de l'ordre de
10 000 ans : en effet, nous sommes en mesure de reconstituer la succession des éclipses
observées et enregistrées par nos prédécesseurs, surtout chinois, depuis plus de 5 000 ans. Les
erreurs, sur cet intervalle, ne sont que d'environ une heure ou deux et pourraient, en réalité,
provenir plutôt du deuxième effet (il vaut la peine de noter, ici, que 5 et 10 mille ans dans le
passé correspondent assez exactement aux limites de l'ère néolithique). Nous pouvons donc
affirmer que d'ici 10 000 ans, les incertitudes sur les paramètres orbitaux tels que nous les
connaissons aujourd'hui, engendreront au maximum des incertitudes de quelques heures sur
Bulletin 118 (septembre 2003) de l'INSTITUT DE LA MÉTHODE (Association Ferdinand Gonseth), pp. 1-8
2
les orbites planétaires et qu'elles ne nous feront pas perdre toute connaissance de l'évolution
du système solaire avant plusieurs millions d'années. Même au bout de ce temps beaucoup
plus long, les rayons des orbites des différentes planètes n'auront pratiquement pas changé et
on ne pourra pas dire que le système est devenu totalement chaotique. Il faudra probablement
attendre quelques cinq milliards d'années, lorsque le Soleil aura épuisé son carburant
d'hydrogène et s'effondrera pour immédiatement exploser par ricochet en nova ou géante
rouge, pour que le système solaire soit vraiment fortement "chamboulé".
Le graphe de la Fig. 1 est une illustration de ce premier effet d'incertitude sur les
conditions initiales. Il s'agit d'un pendule rigide, comme celui d'une horloge, mais excité
beaucoup plus fortement par une force périodique, de façon à pouvoir le faire tourner
complètement. Les trois courbes du graphe montrent les mouvements du pendule lorsque cette
excitation est enclenchée alors que le pendule est soit au repos (v = 0), ou qu'il oscille déjà
très imperceptiblement vers la droite (v = 0.15) ou vers la gauche (v = -0.2). Ces toutes petites
différences dans les conditions initiales n'ont d'abord pas de conséquences importantes, les
trois courbes suivent pratiquement le même chemin, mais soudain elles divergent et le chaos
s'installe. Le balancier arrive au voisinage de la position complètement renversée, le demi-
tour; dans deux des cas la force d'entraînement le ramène du même côté, alors que dans le
troisième il fait un tour complet. Et dans les deux situations il revient du même côté, ce
n'est que partie remise, les deux courbes s'éloignent l'une de l'autre et sont bientôt, elles aussi,
séparées d'un tour entier (ce graphe est adapté d'un exemple aimablement fourni par le Prof.
Hans Beck et son assistant, M. Matteo Monbelli, de l'Institut de Physique de l'Université de
Neuchâtel).
2. Le climat, source de désordre à très
long terme dans le système solaire
Le deuxième effet est plus subtil. Les calculs astronomiques où interviennent plusieurs
corps sont difficiles; on sait, par exemple, que le problème à trois corps ne peut déjà plus être
résolu de façon analytique. Pour simplifier les calculs on remplace donc le Soleil, les planètes
et leurs satellites par des points de masse sans dimensions. Cela serait sans conséquences, si
ces corps étaient parfaitement indéformables et possédaient une symétrie exactement
sphérique; mais cela n'est pas le cas. Comme exemples d'effets qui ne peuvent pas être traités
ainsi on peut citer les marées. Des effets de ce genre ont pour conséquence que les deux
satellites de Mars, Phobos et Deimos, vont bientôt l'échelle des temps géologiques, soit
dans quelques millions d'années !) tomber sur leur planète. Le temps caractéristique pour
l'instauration de petits écarts est aussi de l'ordre de 10 000 ans ou plus, mais on ne peut pas
prédire l'ampleur exacte de ces effets, car ils dépendent de facteurs tels que le climat moyen
(p. ex. la distribution des vents et des courants marins, le niveau des mers, etc.) et de la forme
du globe dans tous ses détails (en particulier les déviations d'une sphéricité parfaite à cause
des forces centrifuges causées par la rotation). Ainsi, au maximum de la dernière glaciation, le
niveau des océans était-il de 130 m au-dessous du niveau actuel, cela avait une influence très
importante sur les marées. En effet, le freinage provoqué par les marées dépend fortement de
la topographie des fonds marins aux abords des côtes et de la forme de ces côtes. Par suite de
la dérive des continents, la topographie du globe évolue constamment, bien que très
Bulletin 118 (septembre 2003) de l'INSTITUT DE LA MÉTHODE (Association Ferdinand Gonseth), pp. 1-8
3
lentement. En fin de compte on peut dire, pour ce deuxième effet, que les conclusions pour le
court terme sont les mêmes que pour le premier : on ne prévoit rien de spectaculaire. Pour le
très long terme de dizaines ou centaines de millions d'années, par contre, les prévisions sont
de plus en plus incertaines.
La Fig. 2 est une illustration de ce que nous venons de dire : un processus oscillatoire
est soumis à une perturbation croissante; au début cela ne semble pas l'influencer; mais la
perturbation augmente et finalement l'oscillateur perd toute régularité et se comporte de façon
totalement imprévisible (cet exemple nous a été fourni par le Prof. Edmond Geneux de Ste-
Croix). Un exemple naturel, mais inversé dans le temps, nous est fourni par le climat. Pendant
la dernière glaciation, qui s'est terminée voici quelques 12 000 ans, la température moyenne
de tout l'Atlantique Nord pouvait changer en quelques années, et de façon totalement
imprévisible, de quelques 5 °C, ce qui est énorme. Mais depuis 11 600 années, ces
oscillations ont totalement disparu, pour des raisons qu'on ne s'explique pas encore bien
aujourd'hui.
3. Les instabilités inhérentes
aux systèmes planétaires
Laplace en 1772 et Lagrange en 1776 furent les premiers à poser la question de la
stabilité des systèmes planétaires. Ils arrivèrent tous deux à la conclusion qu'au premier ordre
des masses planétaires rapportées à la masse de l'étoile centrale, soit la masse du Soleil dans le
cas qui nous intéresse ici, il n'y avait pas de termes séculaires, c.-à-d. de termes qui à très
longue période peuvent conduire à des instabilités. En 1856 Le Verrier reprend ces calculs,
mais cette fois il tient compte de termes d'ordre supérieur et constate que ces termes
additionnels viennent modifier la valeur des fréquences séculaires du système. La stabilité du
système solaire redevient ainsi une question non résolue.
Jacques Laskar (1996) fait l'historique des recherches entreprises à ce sujet au cours du
siècle passé. Si la conclusion qu'à très long terme la stabilité des orbites planétaires ne peut
pas être garantie de façon absolue, une collision entre Mercure et Vénus, par exemple, ne
pourrait pas avoir lieu avant quelques 3,5 milliards d'années. Pour les planètes plus éloignées
du Soleil, y compris la Terre, ce laps de temps est encore beaucoup plus long. Ainsi, même si
le système solaire est instable de façon inhérente, des phénomènes catastrophiques conduisant
à sa destruction sous sa forme actuelle ne peuvent avoir lieu que dans un temps comparable à
son âge, soit environ 5 milliards d'années !
4. Des perturbations peuvent
aussi venir de l'extérieur !
Dans une quatrième catégorie on doit mettre les interactions imprévisibles avec de
gros astéroïdes venus de l'espace interstellaire. Ce qu'on entend ici par un gros astéroïde est un
objet dont la masse vaut au moins quelques pour-cent de celle de la planète cible, par
exemple, une collision entre la Terre et un bolide aussi massif que Mars, la vitesse relative
Bulletin 118 (septembre 2003) de l'INSTITUT DE LA MÉTHODE (Association Ferdinand Gonseth), pp. 1-8
4
des deux corps est de plusieurs dizaines de kilomètres par seconde (comme exemple, la
vitesse de la Terre dans son orbite autour du Soleil est proche de 30 km/s). La probabilité de
telles collisions a diminué considérablement depuis la naissance du système solaire et elle est
maintenant insignifiante.
On sait par exemple que dans son orbite de près de 250 ans Pluton descend à chaque
tour sous celle de Neptune pendant des périodes d'une vingtaine d'années. On pourrait donc
penser qu'une collision entre ces deux planètes est fort probable. Mais comme nous l'avons
montré ailleurs (Fischer, 2002), ces deux planètes sont dans une interaction de résonance et
elles adaptent leurs trajectoires de façon à garantir que la collision soit évitée. Une
démonstration que ce mécanisme a parfaitement fonctionné sur une très longue période est
fournie par le satellite Charon de Pluton. Pluton et Charon tournent l'un autour de l'autre à la
même vitesse qu'ils tournent sur eux-mêmes, sur des orbites parfaitement circulaires autour de
leur centre de gravité commun (Fischer 2003). Ainsi ce sont toujours les deux mêmes
hémisphères de ces astres qui se font face. Cela signifie que les deux partenaires de cette
danse ont connu pendant une très longue période, probablement de plusieurs centaines de
millions d'années, une interaction gravitationnelle du même type que celle qui sur Terre
produit les marées. Pluton ne pourrait donc en aucun cas avoir été capturé récemment par le
système solaire et bien qu'il plonge régulièrement à l'intérieur de l'orbite de Neptune, sa
propre orbite a certainement connu une remarquable stabilité sur cette très longue durée de
centaines de millions d'années. Cette constatation s'accorde mal avec l'affirmation de Laskar
(1996) qui prétend que l'orbite de Pluton est chaotique, mais reste confinée dans d'étroites
limites, ajoute-t-il pourtant. Même s'il est acquis que Pluton est une planète qui a été capturée
bien après la formation du Système solaire, cette capture s'est faite il y a déjà fort longtemps
et Pluton et son satellite Charon se sont fort bien intégrés à leur nouvel environnement solaire.
5. Les théories du chaos et les prédictions
à long terme, la flèche du temps
A l'origine, la théorie des phénomènes chaotiques a été développée en relation avec les
prédictions météorologiques, mais on a bientôt compris que presque tout ce qui évolue aboutit
finalement à une forme de chaos. Tous ceux qui s'intéressent aux "prévisions
météorologiques" ont sûrement remarqué qu'on se limite en général à prédire le temps des
cinq jours à venir. La raison en est bien simple : au-delà de cinq jours, et cela en dépit de
l'énorme capacité de calcul des plus gros ordinateurs dont on dispose aujourd'hui, les
prédictions deviennent terriblement incertaines : on ne peut guère leur accorder de crédit. Les
théories du chaos avaient justement pour objet de comprendre pourquoi il en est ainsi.
Ces mêmes théories ont permis de jeter un éclairage nouveau sur pratiquement tous les
systèmes complexes, en particulier ceux comprenant un grand nombre de particules, comme
les gaz et les liquides, ou d'autres qui obéissent à des équations non-linéaires. Les lois
élémentaires de la physique sont généralement réversibles, c.-à-d. qu'elles restent invariantes
par rapport à une inversion du temps. Mais dès qu'on cherche à décrire le comportement de
certains systèmes comprenant des équations non-linéaires, ou d'autres composés d'un très
grand nombre d'éléments, cette réversibilité peut disparaître : avec le temps qui s'écoule
Bulletin 118 (septembre 2003) de l'INSTITUT DE LA MÉTHODE (Association Ferdinand Gonseth), pp. 1-8
5
apparaît un désordre grandissant, le chaos s'installe soudain rapidement. Le physicien dit que
l'entropie augmente.
On cite souvent le parfum qui diffuse de sa bouteille dans une chambre entière, ou le
mélange d'un colorant soluble dans un liquide, pour illustrer les phénomènes qu'on dit
irréversibles, ceux l'on passe d'une situation bien ordrée, avec le parfum dans la bouteille
fermée et de l'air parfaitement inodore dans la chambre, à un désordre complet, celle du
parfum qui s'est totalement mélangé à l'air. Même si c'est à dessein qu'on a ouvert la bouteille,
il y a désordre dans le sens qu'on ne peut pas revenir en arrière, faire retourner le parfum dans
sa bouteille. Il vaut peut-être la peine de préciser les conditions de cette expérience :
supposons une chambre type de 50 m3 et une bouteille de 20 ml de parfum, le tout à pression
et température normales. A la place du couvercle de la bouteille on place un détecteur des
molécules de parfum, qui compte celles qui entrent et celles qui sortent. Dès que le système
constate que toutes les molécules de parfum sont retournées dans la bouteille, un couvercle
ferme cette dernière et enregistre l'heure de la fermeture. On peut parier sans crainte qu'il
faudra en moyenne plus que l'âge de l'Univers pour observer la fermeture de la bouteille. C'est
une expérience simple, qu'on pourrait sûrement mettre en œuvre. Même si on ne la verra
jamais aboutir à la fermeture de la bouteille, tout le monde la comprend facilement (n'oublions
pas, cependant, que pour vérifier que ce retour a vraiment eu lieu, il faudrait que la bouteille
se ferme immédiatement et reste fermée, sinon le parfum en ressortirait aussitôt et on n'aurait
aucune preuve que le retour momentané s'est effectivement produit). Cette irréversibilité
manifeste suggère une direction pour l'écoulement du temps et les théories du chaos ont ainsi
contribué à une meilleure compréhension de la notion de "flèche du temps".
6. L'effet papillon
Comme illustration extrême des conséquences lointaines d'un tout petit effet, dans le
temps comme dans l'espace, on cite souvent ce papillon, dont les battements d'ailes à Tokyo
engendrent un orage à Paris. Mais on peut montrer que la probabilité d'une telle relation de
cause à effet est encore incroyablement plus improbable que de voir tout le parfum réparti
dans une chambre retourner d'un coup dans la bouteille.
L'idée de l'effet papillon est née à la suite des travaux de Lorenz (1963, 1965) et
Arnold (1966). Ces auteurs avaient essayé de modéliser le comportement de l'atmosphère
terrestre comme s'il s'agissait d'un système a seulement deux dimensions. Ces auteurs
pensaient que vu l'énorme étendue de l'atmosphère et son épaisseur comparativement très
faible, il devait être possible de modéliser son comportement en négligeant l'extension
verticale. Cette façon de faire simplifiait grandement les calculs et semblait justifiée puisque
l'atmosphère s'étend sur la surface entière du globe, alors qu'elle est limitée en altitude à
quelques dizaines de kilomètres. En effet, si la totalité de l'air était comprimée en une couche
à la pression qu'elle a au niveau de la mer, soit la pression d'une atmosphère, cette couche
n'aurait qu'une épaisseur de huit kilomètres. Cette petite épaisseur, comparée au pourtour
terrestre de 40'000 km, devait garantir une certaine crédibilité au modèle à deux dimensions.
1 / 9 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !