Structure électronique des atomes

publicité
Structure électronique des atomes
I)
Rappels :
a. Constituants d’un atome :
Dans le modèle planétaire d’un atome, les électrons tournent autour du
noyau.
L’atome est noté
•
•
A
Z
X avec
Ordres de grandeurs :
• Taille de l’atome :
• Taille du noyau :
• Masse d’un nucléon :
• Masse d’un électron :
• Charge élémentaire :
b. Elément chimique
Def :
Isotopes :
II)
Vers une nouvelle mécanique :
a. Spectre d’émission :
Quantification :
L’énergie de l’onde lumineuse émise ou absorbée
est liée à celles des niveaux électroniques par :
b. Mécanique quantique :
Ces résultats expérimentaux, entre autres, ne peuvent pas être expliqués dans le cadre de la
mécanique classique newtonienne : le modèle planétaire de l'atome ne permet pas d'expliquer
la quantification de l'énergie.
Un nouveau modèle de mécanique, valable uniquement pour le monde microscopique, a donc
été développé au début du XXème siècle : c’est la mécanique quantique.
Cette théorie sera plus développée en 2ème période. On peut toutefois commencer par un
résultat important : un grand principe de la mécanique quantique, le principe d’incertitude
d’Heisenberg induit que l’on ne peut pas connaître simultanément et avec une précision
infinie la position et la vitesse de l’électron. On ne peut donc même pas définir de trajectoire.
On ne peut connaître que certaines informations comme sa probabilité de présence dans un
volume donné de l’espace ou encore son énergie…
III)
Les nombres quantiques :
a. Les 4 nombres
A droite : représentation de quelques OA
b. n, le nombre quantique principal
Couche :
- On peut attribuer à chaque couche électronique une notation (couche K pour n = 1 , L pour
n = 2 , M pour n = 3 ,…) mais cette notation n'est plus utilisée à notre niveau. On verra en
effet que l'on garde en pratique la valeur de n en tant que notation.
c. l, le nombre quantique secondaire ou azimutal
Sous-couche :
-
l
notation
0
s
1
p
2
d
3
f
4
g
5
h
…
…
Remarque :
Les termes de "couche" ou de "sous-couche" électronique sont utilisés, mais ils ont
l'inconvénient de faire penser au modèle planétaire de l'atome, qui est un modèle faux. Les
électrons ne sont pas situés sur des couches concentriques centrées sur le noyau…
d. ml , le nombre quantique magnétique orbital
e. Le 4ème nombre quantique : ms
4ème nombre :
Notations :
Dans la suite, on adopte une représentation symbolique de l’état d’un électron :
- l’OA est représentée par une case quantique :
- l’état de spin est représenté par une flèche :
- l’électron par la réunion des deux :
Remarque :
IV)
Aspects énergétiques :
a. Cas de l’atome d’hydrogène :
Rappel : 1 eV correspond à l’énergie d’un électron soumis à une différence de potentiel de 1
V. Comme l’expression de l’énergie électrostatique est Eélectrostat = q V avec q la charge de la
particule et V le potentiel électrostatique dans laquelle la particule est placée, alors
1 eV = e×1= e J = 1,6.10-19 J
Diagramme énergétique :
Dégénérescence :
Cela se traduit mieux sur ce 2ème diagramme
énergétique :
b. Cas des atomes polyélectroniques :
Sur les cases quantiques :
Rq : l’ordre des niveaux énergétiques n’est plus uniquement celui des n croissants. Il sera
précisé par la suite (règle de Klechkowski)
V)
Configuration électronique :
a. Définition :
Def :
Fondamental/ niveaux excités :
Ex :
b. Règles de remplissage :
Principe d’exclusion de Pauli (1925) :
Csq :
•
ns
sous-couche
•
np
nd
nf
-
nb. max. d’e
Règle de Klechkowski :
Ex : configuration électronique des atomes suivants :
H
He
Li
Be
B
Ne
Fe
Z=1
Z=2
Z=3
Z=4
Z=5
Z=10
Z=26
Attention :
Règle de Hund :
Mise en évidence : cas du carbone 126C
Schéma mnémotechnique
[
Enoncé :
Cas de l’oxygène :
Electrons célibataires / appariés :
.
c. Application : paramagnétisme et diamagnétisme
Une espèce (atome, ion ou molécule) présente des propriétés magnétiques différentes
(comportements différents dans un champ magnétique variable) selon que tous les électrons
sont appariés ou non : soit des propriétés diamagnétiques, soit des propriétés
paramagnétiques.
Si tous les électrons sont appariés, le magnétisme est relativement faible : il s'agit de
diamagnétisme et l'échantillon est repoussé par les zones de champ fort.
Si l'un au moins des électrons est célibataire, un magnétisme plus important se manifeste : on
parle de paramagnétisme (dans ce cas, le diamagnétisme dû aux électrons appariés est
négligeable) et l'échantillon est attiré par les zones de champs fort.
d. Electrons de cœur/ électrons de valence :
Dans la configuration électronique fondamentale, les électrons de plus haute énergie jouent un
rôle particulier. Moins liés au noyau, ils sont plus sensibles aux forces extérieures et sont
responsables de la réactivité chimique de l'atome. Ce sont les électrons de valence.
Def :
Pour les éléments de grand numéro atomique, la configuration de cœur peut-être remplacée
par le symbole de l'élément correspondant à cette configuration électronique, c’est-à-dire du
gaz rare correspondant.
Exemples :
- Carbone 6C :
- Chlore 17Cl :
- Germanium 32Ge :
- Osmium 76Os :
e. Configuration des ions :
Pour obtenir la configuration d’un ion, il faut commencer par déterminer celle de l’atome
correspondant.
Pour un anion, il suffit de rajouter des électrons en respectant les 3 règles (Pauli,
Klechkowski, Hund)
Pour un cation, il faut retirer les électrons de plus hautes énergies qui sont généralement les
derniers placés
SAUF
Ex :
Téléchargement