Page 1
CORRECTION DES EXERCICES D'OPTIQUE 2
I) Propriétés de l'œil.
a) On considère un œil normal (on dit emmétrope).
i. L’objet regardé, A, étant à l’infini son image, A’, se forme dans le plan focal image en F’ du
cristallin. L’œil normal n’a pas besoin d’accommoder pour voir net un objet placé à l’infini,
donc l’image de cet objet se forme sur la rétine, on en déduit que la rétine coïncide avec le
plan focal image du cristallin quand l’œil n’accommode pas :
f'1 =
1
'OF
=
'OA
= 15 mm
On retrouve ce résultat en posant
OA
= et en utilisant la relation de conjugaison.
ii. Quand l’objet A est placé au P.P., P à 25 cm de l’œil (
OA
=
OP
= 25 cm), l’œil doit
accommoder au maximum pour le voir net, dans ce cas l’image A’ se forme encore sur la
rétine et (
'OA
= 15 mm). Le foyer n’est plus sur la rétine il s’est déplacé : c’est en cela
précisément que consiste le phénomène d’accommodation de l’œil. On a :
'OA
1
OP
1
=
'OF
1
2
=
2
'f1
et f'2 =
= 14,15 mm
iii. L'amplitude d'accommodation , est donnée par =
21
'f1
'f1
, grandeur homogène à
l’inverse d’une longueur, elle se mesure en dioptries (δ) si f’1 et f2 sont exprimés en m.
Pour l’œil normal, on a : =
21 '
f1
'
f1
= 4 δ
b) La personne âgée voit net un objet placé à l’infini sans accommoder, on a donc :
f'1 =
1
'
OF
=
'
OA
= 15 mm, avec ' =
4
=
31
'f1
'f1
et pour f’3 > 0 :
f'3 =
'.'f1 'f
1
1
+
= 14,78 mm
Le punctum proximum P est situé à une distance de l’œil telle que :
'OA
1
OP
1
=
3
'f1
d’où
OP
=
3
3
'
f'OA 'f.'OA
100 cm
P est donc à 100 cm de l’œil.
II) Microscope.
a)
Page 2
b) Graphiquement, on trouve :
cm1,1AO
1
=
On cherche
AO1
pour que l’image A1B1 de AB donnée par l’objectif soit dans le plan focal de
l’oculaire (pour que l’image finale soit à l’infini) on a donc :
cm13FOOOFOAO
22212111
=+==
On applique la relation de conjugaison pour l'objectif :
'FO1
AO1
AO1
11111
=
d'où
cm083,1
AO'
F
O'FO.AO
A
O
1111
1111
1
=
=
c) Il faut déterminer α'. Or, on a :
122
BO
ˆ
F'=α
.
Dans le triangle F2O2B1 on peut écrire :
22
11
OF BA
)'tan( =α
en module. D'autre par les triangles
O1A1B1 et O1AB étant semblables, on a :
AO
AB
AO BA
111
11 =
soit
AOAO
.ABBA
1
11
11
=
que l'on peut
porter dans l'équation donnant la tangente :
3
22
25
122
11 10.54,1
10.13.10.5 10.10
AO.OF AO.AB
)'tan(
===α
soit α' = 1,54.103 rad
d'où
δ==
α
=
154
1010
.54
,1
)mètre
en(
AB )
radian
en(
'
)
dioptrieen(P 5
3
d) Le diamètre apparents α de l'objet AB vu à 25 cm est :
rad10.4
10.25
10
)tan( 3
2
5
==αα
d'où
5,38
10.4 10.54,1
)radianen()radianen('
G5
3
==
α
α
=
e) On a :
δ=
α
=
α
αα
=4
)mètreen(AB )radianen(
'
.
AB
'
G
P
Le rapport entre la puissance et le grossissement commercial est indépendant de la
dimension de l'objet (petit toutefois) observé, c'est aussi une caractéristique du microscope.
On a, ici :
P (en dioptrie) = 4.G
III) Lentilles minces convergentes et microscope.
a) i. La vergence C d'une lentille est l’inverse de sa distance focale. On exprime f’ en mètre et
C en dioptries (δ) : C =
1
f'
ii. Pour construire B1, on trace un rayon issu de B
et, parallèle à l’axe optique, qui frappe (L1) en I,
ce rayon sort de la lentille en passant par la
foyer image F’ ; on trace un second rayon issu
de B et passant par le centre optique O de (L1),
ce rayon n’est pas dévié. L’intersection de ces
deux rayons est le point B1, image de B. A1 est
la projection de B1 sur l’axe optique.
Les rayons marginaux issus de B sortent de la lentille en passant par B1.
iii. On voit sur la construction graphique que l'image A1B1 est une image réelle, reversée
et plus grande que l’objet AB.
Page 3
iv. Pour construire B’, on trace un
rayon issu de B1 et parallèle à l’axe
optique qui frappe (L2) en J, ce
rayon sort de la lentille en passant
par la foyer image F’ (on doit
prolonger virtuellement ce rayon) ;
on trace un second rayon issu de B1
et passant par le centre optique O
de (L2), ce rayon n’est pas dév(on
doit prolonger virtuellement ce
rayon). L’intersection (virtuelle - en
avant de la lentille) de ces deux rayons est le point B’, image de B1. A’ est la projection de
B’ sur l’axe optique.
v. On voit donc sur la construction graphique que l'image A’B’ est une image virtuelle,
droite (par rapport à l’objet A1B1) et plus grande que l’objet A1B1.
vi. Pour étudier la construction de l’image d’un objet par une lentille, on convient de
considérer que les rayons lumineux se propage de la gauche vers la droite : on
oriente alors l’axe optique de la lentille de la gauche vers la droite et on oriente de
plus, dans le plan de construction, un axe vers le haut.
Le centre optique O de la lentille est pris comme origine des abscisses.
OA
est la mesure
algébrique de la position de l’objet,
OA'
est celle de la position de l’image. La distance
focale de la lentille est, par définition,
OF'
= f’ où F’ est le foyer image de la lentille. On
démontre que la position de l’objet et celle de son image sont liées par la relation de
conjugaison :
1 1 1
OA OA OF C
' '
− = =
Si
OA
> 0 on dit que l’objet est virtuel sinon on dit qu’il est réel.
De même, si
OA'
> 0 on dit que l’image est réelle sinon on dit qu’elle est virtuelle.
Le grandissement est défini, pour une situation donnée de l’objet, par
γ = =
A B
AB OA
OA
' ' '
AB
et
A B
' '
sont mesurés algébriquement sur un axe orienté, perpendiculaire à l’axe
optique comme indiqué plus haut.
Si γ < 0 on dit que l’image est renversée par rapport à l’objet.
b) i. L’image A1B1 est renversée et le grandissement de l’objet AB par la lentille (L1) est :
γ1 =
A B
AB
1 1
=
O A
O A
11
1
=
15
510
2
,
.
= 30 d’où l’on tire
O A
1
=
OA
1 1
30
= 5,73 mm.
On applique la relation de conjugaison à la lentille (L1) :
1
1
f '
=
1 1
1 1 1
O A O A
d’où :
f1’ =
O A O A
O A O A
1 1 1
1 1 1
.
=
172 0 573
0573 172
, .( , )
, ,
− −
= 0,555 cm
Page 4
ii. L’intervalle optique est définit par : =
F F
1 2
'
Ici, =
F F
1 2
'
=
F O
1 1
'
+
O O
1 2
+
O F
2 2
= f1’ +
O O
1 2
f2’ = 16,545 cm
iii. On a
O A
2 1
=
O O
2 1
+
O A
11
= 1,9 cm. Pour la lentille (L2) :
1
2
f '
=
1 1
2 2 1
O A O A'
O A
2
'
=
O A f
f O A
2 1 2
2 2 1
. '
'+
=
( , ).
,
19 2
2 19
= 38 cm
iv. Calculons le grandissement de l’image finale A’B’ par rapport à l’image intermédiaire A1B1
par la lentille (L1). On sait que A1B1 est 30 fois plus grand que l’objet AB) :
γ2 =
A B
A B
' '
1 1
=
O A
O A
2
2 1
'
=
38
19,
= 20 d’où l’on tire
A B' '
= 20.
A B
1 1
= 20.( 1,5) = 3 cm.
L'image définitive A’B’ de l'objet AB obtenue à travers le microscope est donc :
- virtuelle (
O A
2
'
< 0)
- droite par rapport à A1B1 (γ2 > 0), mais renversée par rapport à AB (γ1 > 0)
- agrandie 20 fois par rapport à A1B1, et 30x20 = 600 fois par rapport à AB
v. Le grandissement du microscope est défini par : G =
θ
θ
'
θ’ est l’angle sous lequel est vu
l’objet à travers le microscope et θ l’angle sous lequel on le voit à l’œil nu à dm = 25 cm
(punctum proximum P.P. d’un œil normal).
Attention : le grossissement commercial est défini par Gcommercial =
θ
θ
'
θ’ est l’angle
sous lequel est vu l’objet à travers le microscope quand l’œil n’accommode pas (image
finale à l’infini) et θ l’angle sous lequel on le voit à l’œil nu à dm = 25 cm.
Ici, on demande le grossissement dans les conditions d’utilisation. En fait la
différence entre θ’ et θ’ est très faible comme on le voit sur la figure.
On ne considère que les mesures des longueurs.
θ est l'angle (petit) sous lequel l'objet est vu à
l'oeil nu à la distance minimale de vision
distincte dm = 25 cm :
θ
AB
dm
=
510
25
3
.
2.10−4 rad
A travers le microscope, on a : θ
A B
O A
1 1
2 1
=
015
19
,,
0,078 rad
D’où G =
θ
θ
'
395 fois
Le grossissement commercial serait θ
AB'
F A
'' '
2
=
O J
F O
2
2 2
'
=
A B
f1 1
2'
=
015
2
,
0,075 rad
Et GC =
θ
θ
'
375 fois
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !