seddik.abderrazek2012@gmail.com
1/4
Stabilité du noyau atomique
I- Les caractéristiques du noyau
1/ Dimension du noyau
La dimension du noyau est de l’ordre d’un fermi (fm).
1 fm = 10-15m
2/ Masse du noyau
La masse du noyau est de l’ordre de 10-25 à 10-27 kg. Alors le kg est une unité très grande pour la masse
du noyau donc on utilise l’unité de masse atomique u
23
3
C10.02,6.12 10.12
N.12
M
12 carbonedeatomeun'dmasse
u1
1 u = 1,66.10-27 kg
mp = 1,6726.10-27 kg = 1,00726 u ; mn = 1,6748.10-27 kg = 1,008665 u
3/La cohésion du noyau
Dans le noyau d’un atome existe des forces de types nucléaires assurant ainsi la cohésion du noyau. Ces
forces s’exercent entre deux nucléons indépendamment de leurs natures (protons ou neutrons).
Les forces nucléaires se manifestent uniquement entre des particules très proches et deviennent
négligeables devant les forces électrostatiques dès que la distance entre les nucléons dépasse le fermi
II Equivalence masse-énergie
1/ Le défaut de masse
a- Exemple : synthèse d’un noyau d’hélium
Déterminons la masse m1 des nucléons séparés et au repos.
m1 = 2.mp + 2.mn = 6,678.10-27 kg
Comparons m1 à la masse
H
24
2
mm
= 6,627.10-27 kg.
On constate que m2 < m1.
∆m = m1 - m2 est appelée le défaut de masse du noyau d’hélium
b- Remarque
Le défaut de masse est général pour tous les noyaux.
c- Définition
Le défaut de masse ∆m d’un noyau est égale à la masse de ses nucléons, pris séparément et au repos,
diminué de la masse du noyau.
Pour un noyau
X
A
Z
le défaut de masse ∆m s’exprime par :
∆m = Z.mp + (A-Z).mn- mnoyau >0
2/ L’énergie de masse
Transformation
nucléaire
m1
m2
seddik.abderrazek2012@gmail.com
2/4
Pour Einstein, la masse est une forme d’énergie potentielle. Il postula en 1905 le principe suivant :
Tout corps au repos dans un référentiel donné possède du seul fait de sa masse m une énergie potentielle
appelée énergie de masse donnée par la relation
E0 = m.c2 où c représente la vitesse de la lumière dans le vide.
3/ Relation d’Einstein
Dans sa relativité restreinte Einstein a montré que
la transformation nucléaire s’accompagne d’une
variation de la masse du système ainsi que son
énergie donnée par la relation :
Remarque
Le joule est une unité très grande une transformation nucléaire il plus convenable d’utiliser le ev =
1,6.10-19 J ou le Mev = 1,6.10-13 J
Lorsqu’on exprime l’énergie en Mev, la masse est souvent exprimée en Mev/c2.
kg10.778,1
10.9
610,1
c/Mev 30
16
13
2
mp = 938,3 Mev/c2 ; mn = 939,6 Mev/c2.
1u = 1,66.10-27 kg ; 1u = 931,5 Mev/c2.
4/ Equivalence masse énergie
La relation Einstein traduit une équivalence entre la masse et l’énergie.
Une matière peut se transformer en énergie et réciproquement
Application : synthèse d’un noyau d’hélium
On donne
2
Hc/Mev4,3727m4
2
∆E = m.c2 = (
- 2.mp +2.mn).c2
A.N :
∆E < 0 le système cède de l’énergie au milieu extérieur.
Pour réaliser la transformation inverse il faut fournir une énergie
w =
E
III- Stabilité du noyau atomique
1/ Energie de liaison
a- Définition
On appelle énergie de liaison d’un noyau notée El est l’énergie qu’il faut fournir au noyau au repos pour
le dissocier en nucléons isolés et immobiles.
Transformation
nucléaire
m1
m2
Transformation
nucléaire
m1
m2
J
kg
m2.s-2
∆E = ∆m.c2
Transformation
nucléaire
(m1 , E1)
(m2 , E2)
seddik.abderrazek2012@gmail.com
3/4
b- Expression
El = m.c2
El = ( Z. mp +(A-Z). mn-
X
A
Z
m
).c2
2/ Energie de liaison par nucléon
a- Définition
On appelle énergie de liaison par nucléon notée El/A, le rapport de l’énergie de liaison El par le nombre
de masse A.
b- Expression
A
E
El
A/l
exprimée souvent en Mev.
3/ Stabilité du noyau atomique
Un noyau est d’autant plus stable que son énergie de liaison par nucléon est plus grande.
(voir courbe d’Aston)
On estime que les plus stables sont ceux qui ont un nombre atomique
45 < A < 185
Applications
Application (1)
On considère les nucléides suivants :
Net C ; B12
7
12
6
12
5
.
1°) Calculer l’énergie de liaison pour chacun de ces noyaux.
2°) En déduire l’énergie de liaison par nucléon pour chacun d’eux.
3°) Classer par ordre de stabilité décroissante ces trois noyaux.
On donne : masse du neutron mn = 939,6 MeV/c2
masse du proton mp = 938,3 MeV/c2
2
N
2
B
2
C
c/MeV7,11191m
c/MeV3,11188m
c/MeV7,11174m
12
7
12
5
12
6
Application (2)
Unité de masse atomique
u = 1,660 54 10-27 kg
Énergie de masse de l'unité de masse atomique
E = 931,5 MeV
Électronvolt
1 eV = 1,60 10-19 J
Megaélectronvolt
1 MeV = 1106 eV
Célérité de la lumière dans le vide
c = 3,00 108 m.s-1
seddik.abderrazek2012@gmail.com
4/4
Nom du
noyau ou de
la particule
Radon
Radium
Hélium
Neutron
Proton
Électron
Symbole
Rn
222
86
Ra
226
88
He
4
2
n
1
0
p
1
1
e
0
1
Masse (en u)
221,970
225,977
4,001
1,009
1,007
5,49 10-4
1. Désintégration du radium
L'air contient du radon 222 en quantité plus ou moins importante.
Ce gaz radioactif naturel est issu des roches contenant de l'uranium et du radium. Le radon se forme par
désintégration du radium (lui-même issu de la famille radioactive de l'uranium 238), selon l'équation de
réaction nucléaire suivante :
Ra
226
88
Rn
222
86
+
He
4
2
1°) Donner l'expression littérale du défaut de masse m du noyau de symbole
A
Z
X et de masse mX.
Calculer le défaut de masse du noyau de radium Ra. L'exprimer en unité de masse atomique u.
2°) Écrire la relation d'équivalence masse-énergie.
3°) Le défaut de masse m(Rn) du noyau de radon Rn vaut 3,04 1027 kg
a- Définir l'énergie de liaison El d'un noyau.
b- Calculer, en joule, l'énergie de liaison El(Rn) du noyau de radon.
c- Vérifier que cette énergie de liaison vaut 1,71103 MeV.
d- En déduire l'énergie de liaison par nucléon El/A du noyau de radon.
Exprimer ce résultat en MeV.nucléon-1 .
4°) Comparer la stabilité du radon à celui du radium
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !