J.
Chirn.
Phys.
(1998)
95,
866-870
(9
EDP
Sciences.
Les
Ulis
Les modèles
de
calcul
de
dose
en
radiothérapie clinique
J.C.
~osenwald*
Institut
Curie,
26
rue
d'Ulm,
75005
Paris,
France
Correspondance
et
tirés
a
part.
RÉSUMÉ
En radiothérapie,
il
est indispensable d'avoir une connaissance précise de la dose
délivrée dans le volume cible et dans les organes critiques avoisinants. Pour être uti-
lisables cliniquement, les modèles
de
calcul doivent tenir compte des caractéristi-
ques cxactes des faisceaux utilisés et des densités des tissus. Une précision de l'ordre
de
2%
dans les régions
à
faible gradient de dose, et de
2
mm dans les régions
à
fort
gradieiit est nécessaire tout en conservant un temps de calcul compatible avec une
approche interactive. Les modèles de calcul utilisés sont ici succintement décrits et
coininentés.
Mots
clés
-
radiothérapie, calcul de dose, ordinateurs
ABSTRACT
In
radiation therapy, it is important to know precisely the dose distribution in the
target volume and in the critical organs. To be clinically applicable, the dose calcu-
lation inodels must account for the actual characteristics of the beams and for the tis-
sue densities. An accuracy of
2%
in low dose gradient regions and
2
mm in high
dose gradient is expected, while keeping the computation time consistent with
an
interactive approach. We describe and discuss briefly the dose calculation models
currently used.
Keywords
-
radiotherapy, dose calculation, cornputers
ATTRAIT
ET
INADEQUATION
DES
METHODES
DE
MONTE CARLO
Les méthodes dites de "Monte Carlo"
[l]
sont les seules qui simulent véritable-
ment les interactions entre le rayonnement et la matière. Elles consistent en effet
à
ti-
rer au
sort
le devenir de chacune des particules incidentes en fonction des probabili-
tés des phénomènes physiques associés et
à
suivre les particules primaires et secon-
daires
jusqu'au bout. Elles peuvent donner des résultats précis
à
condition de simuler
Les
modèles de calcul de dose en radiothérapie clinique
867
un nombre suffisant de particules incidentes. La simulation du transport des particu-
les chargées nécessite un certain nombre d'approximations (choix du pas d'échan-
tillonage, des énergies seuil
...)
qui peuvent avoir des conséquences sur la validité
des résultats
[2]
Une difficulté importante des méthodes de Monte Carlo est l'obtention des don-
nées de base correspondant aux faisceaux réellement utilisés. Les spectres de ces
faisceaux sont a priori inconnus. Ils peuvent être eux mêmes calculés par méthode de
Monte Carlo en simulant la géométrie de la tête de l'appareil
131
ce qui nécessite des
hypothèses de base simplificatrices qui intégrent difficilement les rayonnements pa-
rasites tels que la contamination électronique. Une autre solution, elle aussi ap-
proximative, consiste
à
rechercher le(s) spectre(s) qui permet(tent) la restitution des
rendements en profondeurs expérimentaux
[4].
Enfin la modélisation du patient est
complexe.
Le problème majeur reste le temps de calcul. En effet une précision acceptable de
l'ordre de
2
ou
3%
ne peut être obtenue qu'en suivant le devenir de plusieurs dizaines
de millions de photons incidents, ce qui nécessite plusieurs heures de calcul.
Les méthodes de Monte Carlo sont donc réservées aux études théoriques, notamment
pour tester la validité des autres modèles dans des situations complexes, difficiles
à
réaliser sur le plan expérimental.
UTILISATION
DE
DISTRIBUTIONS
DE
DOSES MESUREES
L'utilisation de données expérimentales en nombre suffisant, corrigées pour tenir
compte des modificateurs de faisceaux et de l'interaction avec le patient est la mé-
thode la plus ancienne
[5].
On constitue généralement des tables représentant res-
pectivement les variations de dose en profondeur et dans la direction transverse. La
dose en tout point de la grille est alors reconstituée en effectuant le produit des va-
leurs trouvées dans les deux tables,
à
la profondeur et
à
la distance
à
l'axe voulue.
Des méthodes d'interpolation complètent ce calcul pour accéder
à
la dose en tout
point du plan.
Ces méthodes nécessitent un gros travail expérimental préparatoire et trouvent
rapidement leur limitation dès que I'on cherche
à
traiter les situations complexes
telles que champ irrégulier ou corrections d'hétérogénéités. Elles sont en voie de dis-
parit ion.
868
J.C.
Rosenwald
REPRESENTATION ANALYTIQUE DE LA DOSE
La représentation analytique de la dose sous une forme mathématique est une au-
tre possibilité qui a donné lieu
à
de nombreuses variantes
[6].
La variation de la dose sur l'axe est par exemple approximée par un polynôme ou
une combinaison d'exponentielles. Transversalement, le recours
à
des fonctions de
type tan-1 a été envisagé ainsi que le stockage d'un profil
à
une profondeur donnée
corrigé par une relation analytique permettant de modifier ce profil en fonction de la
profondeur
[7].
L'application de ces méthodes nécessite un ajustement empirique de coeficients
pour s'adapter aux données expérimentales. De plus, des corrections doivent être in-
troduites pour tenir compte des conditions cliniques d'utilisation. Dès que les situa-
tions sont complexes ces corrections deviennent délicates et il faut recourir
à
une ac-
cumulation de facteurs correctifs empiriques et incontrôlables susceptibles de donner
des résultats erronés. Il est alors préférable de s'orienter vers d'autres solutions.
LA
SEPARATION PRIMAIRF,
-
DIFFUSE
La séparation primaire-diffusé, introduite initialement par CIarkson
[8]
a été
transposée sur ordinateur par Cunningham
[9].
Elle est bien adaptée aux faisceaux de
photons présentant des champs de forme irrégulière. Elle est basée sur une détermi-
nation préalable de l'atténuation et de la diffusion pour le faisceau considéré:
-
a) mesure de la variation de dose en profondeur dans l'eau sur l'axe de champs cir-
culaires de diamètres croissants
-
b) extrapolation au diamètre zéro pour obtenir l'atténuation du primaire
-
c) calcul des différences de dose pour différents diamètres, pour en extraire les
coefficients de diffusion
à
toutes les profondeurs et pour tous les rayons utiles.
A
partir de ces tables, la dose primaire en un point est déduite de la dose
«
dans
l'air
»
en effectuant une correction de distance (inverse carré) et d'atténuation par le
r-hilieu, supposé équivalent eau. Une fonction empirique complémentaire permet de
prendre en compte la variation de la dose en bordure de champ. La dose totale est
alors obtenue en intégrant le diffusé sur l'ensemble du volume irradié. Pour cette in-
tégration, différents modes de découpage peuvent être appliqués (secteurs angulai-
res, éléments angulaires d'une couronne
...).
Dans tous les cas le diffusé provenant
d'un élément est calculé
à
partir des coefficients de dimision dérivés des données
expérimentales.
J.
Chim.
Phys.
Les
modèles
de calcul de dose
en
radiothérapie clinique
869
Les limites de la méthode originale peuvent être repoussées en introduisant un
certain nombre d'améliorations
:
-
la prise en compte des hétérogénéités, par découpage
3D
et "mise
à
l'échelle" du
diffusé de chaque élément, ou bien par correction plus globale [l
O];
-
la prise en compte du manque d'équilibre électronique par modification des tables
de diffusé
[Il]
ou en l'introduisant explicitement
à
partir de calculs par méthode de
Monte Carlo
[12];
-
la généralisation aux faisceaux d'électrons
1131.
LA
CONVOLUTIONlSUPERPOSITION
DE
KERNELS
Cette méthode introduite notamment par Mackie
[14]
fait appel
à
des données
précalculées par méthode de Monte Carlo, stockées sous forme de matrices de dis-
persion de dose ("spread dose arrays") et utilisées en tant que "kemel" k(r) (ou
"noyau") conformément
à
l'expression ci-dessous
:
~(i)
=
P(F
-
i')
k
(i')
d3
i
P
Cette expression signifie que la dose
D()
au point
P
situé
à
la distance vectorielle
de la source est la somme des contributions énergétiques
k
déposées
a
tous les sites
d'interaction entourant
P
et situés
à
la distance vectorielle
,
pondérées par la fluence
énergétique primaire
Y
au point d'interaction situé
à
la distance vectorielle
-
de la
source. Le calcul de
'£'
fait appel
à
une formulation analytique prenant en compte
Ifatténuation (exponentielle) des photons, leur dispersion (en llr2), leur modification
quantitative et qualitative en présence d'atténuateurs (collimateur, caches, filtres
...).
L'avantage essentiel de cette méthode est la prise en compte directe des phénomè-
nes de manque d'équilibre électronique. En revanche pour l'appliquer il est indispen-
sable de connaitre ou de calculer le spectre du faisceau incident. II
y
a de plus des
problèmes de temps de calcul
:
lorsqu'on suppose le kemel invariant dans le milieu
on peut, par passage dans l'espace de Fourier, remplacer la convolution par une
simple multiplication et gagner un peu de temps. Sans cette simplification il s'agit
d'une "superposition" de matrices, beaucoup plus longue
à
effectuer.
La méthode présente de nombreuses variantes dont la préintégration des kemels
dans certaines directions. Une préintégration dans le sens de la profondeur permet de
se ramener au cas des pinceaux élémentaires ("pencil beams") couramment utilisés
pour les faisceaux d'électrons.
870
J.C.
Rosenwald
Les méthodes de
convolution~superposition
sont prometteuses et constituent un
bon intermédiaire entre les méthodes de Monte Car10 et les autres méthodes décrites
précédemment. Elles sont toutefois de mise en oeuvre délicate, notamment pour
pouvoir s'adapter aux données réelles des appareils utilisés (spectres, collirnation,
modificateurs de faisceaux) et sont encore trop lentes pour être utilisées de manière
véritablement interactive.
CONCLUSIONS
Les modèles décrits ci-dessus sont mis en oeuvre de manière extrèmement varia-
ble sur les systèmes de calcul de dose couramment utilisés. 11 ne suffit donc pas de
connaitre le type de modèle dont
il
s'agit pour apprécier sa validité. Quelques tests
simples permettent d'apprécier qualitativement les possibilités et les limites des sys-
tèmes.
En
revanche, il est beaucoup plus difficile de déterminer comment se compor-
tent les algorithmes mis en oeuvre, dans les régions critiques ou les situations com-
plexes (doses
à
l'entrée, sous les caches et en bordure de faisceau
...).
Enfin,
il
con-
vient de garder présent
à
l'esprit l'importance de la qualité des données de base
:
le
"meilleur" modèle de calcul sera sans intérêt s'il utilise des données incohérentes
avec les caractéristiques des faisceaux réellement utilisés pour les patients.
REFERENCES
1
Andreo
P
(1 990)
Phys.
Med.
Biol.
36,86 1
2 Andreo
P
(1 991)
Int.
J
Radiat. Oncol. Biol. Phys.
19, 1233
3 Mohan (1988) Monte Carlotransport of electrons and photons. Plenum Co, p.453
4
Ahnesjo A, Andreo
P.
(1 989)
Phys.
Med.
Biol.
34, 145
1
5 Tsien
KC
(
1955)
Br.
J
Radiol.
28,432
6 ICRU
(1
987) report 42 Bethesda, Maryland
7
Van De Geijn (1970)
Comp. Prog. Biomed.
1,47
8
Clarkson J.R. (1941)
Brit.
J.
Radiol.,
14,265
9
Cunningham JR, Shrivastava
PN,
Wilkinson JM (1 972)
Comp. Prog. Biom.
2, 192
10 Kappas
K,
Rosenwald JC (1 986)
Radioth Oncol
5,222
11 Rosenwald JC, Douard J, Sirnonian
M
(1987) The use of cornputers in radiation
therapy,Elsevier Science Publisher p. 327
12 Woo
M
K,
Cunningham J R and Jezioranski
J
J
(1 990)
Med. Phys.
17,
5
88
13 Dutreix
A.
et Briot E.
(1
985)The computation of dose distributions in electrons
beam radiotherapy, Umea University,
p.242
14 Mackie R, Scrimmer
J
W,
Battista JJ (1 985)
Med. Phys.
12,188
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !