y00 +ω2y=g
g
• B R C
k k f∈ B kfk= supxR|f(x)|(B,k k)
f∈ B tRf(.+t)xRf(.+t)(x) = f(x+t)
Γf={f(.+t), t R}f
f∈ B Γf
(B,k k) (an)nNφ
(f(.+aφ(n)))nNR
E
f T Γf=
{f(.+t), t [0, T ]}t7→ f(.+t)fΓf
Γff
f∈ E Γf
x7→ cos(x)+cos(2x)
g
E(B,k k)
E B
(fn)nNf ε > 0
mkfmfk ≤ ε
3t1, . . . , tp(B,k k)fm(.+ti)
ε
3i∈ {1, . . . , p}ΓfmΓfmtRi∈ {1, . . . , p}
kf(.+t)f(.+ti)k ≤ kf(.+t)fm(.+t)k+kfm(.+t)fm(.+ti)k+kfm(.+ti)f(.+ti)k
(B,k k)fm(.+ti)ε i ∈ {1, . . . , p}ΓfΓf
f∈ E E
E B
x7→ cos(x) + cos(2x)
g
g:x7→ P+
n=1 1
n2cos( x
n)
R
f∈ E f t 7→ f(.+t)
0 (xn)nN0g(f(.+xn))nN
f f =g(f(.+xn))nN
Γff f
t7→ f(.+t) 0
f T f
1
TRT
0f f R
f T +1
TRT
0f
f∈ E Γf
f
f∈ E c c0
Γfε > 0α1. . . αpβ1. . . βqu1. . . upv1. . . vq
kPp
i=1 αif(.+ui)ck ≤ εkPq
i=1 βif(.+vi)c0k ≤ ε
g=X
1ip,1jq
αiβjf(.+ui+uj)
ε c c
c0|cc0|≤ 2ε
CfΓfCf
T gT:x7→ 1
TRx+T
xf
CfgT1
nPn
k=1 f(.+kT
n)n1
Cf(un)nNg(gun)nN
φ(guφ(n))nNg g x y
guφ(n)(x)guφ(n)(y)=
1
uφ(n)Zx+uφ(n)
x
fZy+uφ(n)
y
f
=
1
uφ(n) Zy
x
fZy+uφ(n)
x+uφ(n)
f!2|yx|kfk
uφ(n)
n+g(x) = g(y) (gun)nN
c Cfc
gTc T
+x1
TRx+T
xf T +
x
M(f) = lim
T+
1
TZT
0
f
f
M∈ F(E,C)
f T0M(f) = 1
T0RT0
0f M
f
E
f∈ E M(f)0f
M(f)f∈ E x0
f(x0)>0ε=f(x0)
2>0t1,...tp(B,k k)f(.+ti)
ε i ∈ {1, . . . , p}Γfg=Pp
i=1 f(.+ti)M(g) = pM(f)x
i∈ {1, . . . , p} kf(.+x0x)f(.+ti)k ≤ ε f(x+ti)f(x0)
2g(x)f(x0)
2M(g)f(x0)
2
M(f)f(x0)
2p>0
E
E
f g hf, gi=M(fg)
h,ik k2
eλ
R C xReλ(x) = eiλx λReλ∈ E
(eλ)λRh,i
(eλ)λR
f∈ E fˆ
fλR
ˆ
f(λ) = heλ, fi
f T λ /2π
TZˆ
f(λ)=0 nZˆ
f(2πn
T)
n f
(|ˆ
f(λ)|2)λRkfk2
2
ˆ
fSp(f) = {λR,ˆ
f(λ)6= 0}ˆ
f
f∈ E ˆ
f f
f
KfEg∈ E x Kf(g)(x) = M(f(x.)g)λ
Kf(eλ) = ˆ
f(λ)eλ
(E,k k2) (E,k k2)f Kf
g:x7→ f(x)Kf(g)(0) = M(|f|2)
Kf
λ eλ
(eλ)λR(E,k k) (E,k k2)
(eλ)λR
(E,k k2)f=PλSp(f)ˆ
f(λ)eλf
f=PλSp(f)ˆ
f(λ)eλ
(E,k k)
g g :x7→ P+
n=1 1
n2cos( x
n)
g=1
2PnZ
1
n2e1
n
λRˆg(λ) = (1
2n2λ=1
nnZ
0
Sp(g) = {1
n, n Z}
f∈ E C1f0
λˆ
f0(λ) = ˆ
f(λ)
f0
(n(f(.+1
n)f))n1f0
Eˆ
f0ˆ
f
f∈ E F f F F
λ6= 0 ˆ
F(λ) = ˆ
f(λ)
M(f)=0 F∈ E f=P+
n=1 1
n2e1
n2f∈ E M(f) = 0
F f EnNˆ
F(1
n) = i(|ˆ
F(λ)|2)λR
f F F :x7→ Rx
0f
f x u F (x+u) = F(u) + Rx
0f(.+u)
f(f(.+un))nNg
x7→ Rx
0f(.+un)RG
f∈ E F(un)nN(f(.+un))nN
g φ (F(uφ(n)))nN)lIm(F)
(F(.+uφ(n)))nNH=l+G
R
Im(F(.+u)) = Im(F)uIm(H)Im(F) (g(.un))nN
f f g K1=m+FIm(K1)Im(G)
K2=K1+lIm(K2)Im(H) Im(H)Im(F)
Im(K2)Im(H)Im(F)F K2Im(F)F=K2H
g H (un)nN
H g Im(H) = Im(F)l
(F(un))nN
(f(.+un))nN(f(.+vn))nN
(F(un))nN(F(vn))nN
f∈ E F(un)nN
(f(.+un))nNRg
(F(un))nNl(F(.+un))nNR
ΓF
(F(.+un))nNl+G
R(F(.+un))nN
(pk)kN(qk)kN
(xk)kNε0>0k|F(xk+upk)F(xk+uqk)| ≥ ε0
(k)kN(g(.+xk))kNh
(f(.+upk))kN(f(.+uqk))kNg(f(.+xk+upk))kN
(f(.+xk+uqk))kNh(F(xk+upk))kN
(F(xk+uqk))kNk|F(xk+upk)F(xk+uqk)| ≥
ε0ΓFF
n1
f(n)+
n1
X
k=0
akf(k)=g
g∈ E akfR
g= 0 λ1. . . λpP=Xn+Pn1
k=0 akXk
m1. . . mpf:x7→ Pp
k=1 pk(x)eλkxpk
mk1Rλkpk6= 0
pk
g
R
n
R
R Cn
G:t7→ (g1(t), g2(t),...gn(t)) R CnG
i∈ {1,...n}gi∈ E
E
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !