min Pn−1
i=1 ρui+Po∈O Pn−qo
i=1 γovi,o
Pn
i=1 xi,k =nkk∈ K
Pk∈K xi,k = 1 i∈ {1, . . . , n}
yi,c =Pk∈K k,cxi,k i∈ {1, . . . , n}, c ∈ C
zi,o =Pk∈K δk,oxi,k i∈ {1, . . . , n}, k ∈ K
Pi+r−1
j=iuj≥1i∈ {1, . . . , n −r+ 1}
ui≥yi,c −yi+1,c i∈ {1, . . . , n −1}, c ∈ C
ui≥yi+1,c −yi,c i∈ {1, . . . , n −1}, c ∈ C
vi,o ≥Pi+qo−1
j=izj,o −poo∈ O, i ∈ {1, . . . , n −qo+ 1}
ui, yi,c, zi,o, xi,k ∈ {0,1}
vi,o ∈Z+.
xi,k =nk/n i k
bn/rcρ
min Pn−1
i=1 ρui
Pi+r−1
j=iuj≥1i∈ {1, . . . , n −r+ 1}
ui∈ {0,1}.
bn/rcρ
r= +∞qo= 2 o∈ O
ij
ij
qo= 2
cij =ρ×1i j +X
o∈O
γo×1i j o po= 1
1 3
2 5×1+2 = 7
1,4,6,2,7,5,3 7
O=∅
∗mc∗
c∗
c6=c∗
mc∗−1≤X
c∈C\{c∗}
Nc.
c
mcc mc
≤r