
[5] Barrett MT, Scheffer A, Ben-Dor A, Sampas N, Lipson D, Kincaid R, et al.
Comparative genomic hybridization using oligonucleotide microarrays
and total genomic DNA. PNAS 2004;101:11770–7765.
[6] Komura D, Shen F, Ishikawa S, Fitch KR, Chen W, Zhang J, et al.
Genome-wide detection of human copy number variations using high-
density DNA oligonucleotide arrays. Genome Res 2006;16:1575–84.
[7] Kallioniemi A. CGH microarrays and cancer. Curr Opin Biotechnol
2008;19:36–40.
[8] Suela J, Alvarez S, Cigudosa JC. DNA profiling by arrayCGH in acute
myeloid leukemia and myelodysplastic syndromes. Cytogenet Genome
Res 2007;118:304–9.
[9] Tyybäkinoja A, Elonen E, Piippo K, Porkka K, Knuutila S. Oligonucleo-
tide array-CGH reveals cryptic gene copy number alterations in karyo-
typically normal acute myeloid leukemia. Leukemia 2007;21:571–4.
[10] Rücker FG, Bullinger L, Schwaenen C, Lipka DB, Wessendorf S, Fröhling
S, et al. Disclosure of candidate genes in acute myeloid leukemia with
complex karyotypes using microarray-based molecular characterization.
J Clin Oncol 2006;24:3887–94.
[11] Paulsson K, Heidenblad M, Strömbeck B, Staaf J, Jönsson G, Borg A, et al.
High-resolution genome-wide array-based comparative genome hybridi-
zation reveals cryptic chromosome changes in AML and MDS cases with
trisomy 8 as the sole cytogenetic aberration. Leukemia 2006;20:840–6.
[12] Tyybäkinoja A, Saarinen-Pihkala U, Elonen E, Knuutila S. Amplified,
lost, and fused genes in 11q23–25 amplicon in acute myeloid leukemia, an
array-CGH study. Genes Chromosomes Cancer 2006;45:257–64.
[13] Martínez-Ramírez A, Urioste M, Melchor L, Blesa D, Valle L, de Andrés
SA, et al. Analysis of myelodysplastic syndromes with complex karyo-
types by high-resolution comparative genomic hybridization and subte-
lomeric CGH array. Genes Chromosomes Cancer 2005;42:287–98.
[14] Davidsson J, Andersson A, Paulsson K, Heidenblad M, Isaksson M, Borg
A, et al. Tiling resolution array comparative genomic hybridization,
expression and methylation analyses of dup(1q) in Burkitt lymphomas
and pediatric high hyperdiploid acute lymphoblastic leukemias reveal
clustered near-centromeric breakpoints and overexpression of genes in
1q22–32.3. Hum Mol Genet 2007;16:2215–25.
[15] Clappier E, Cuccuini W, Kalota A, Crinquette A, Cayuela JM, Dik WA,
et al. The C-MYB locus is involved in chromosomal translocation and
genomic duplications in human T-cell acute leukemia (T-ALL), the
translocation defining a new T-ALL subtype in very young children.
Blood 2007;110:1251–61.
[16] Kuchinskaya E, Nordgren A, Heyman M, Schoumans J, Corcoran M, Staaf
J, et al. Tiling-resolution array-CGH reveals the pattern of DNA copy
number alterations in acute lymphoblastic leukemia with 21q amplifica-
tion: the result of telomere dysfunction and breakage/fusion/breakage
cycles? Leukemia 2007;21:1327–30.
[17] Schoumans J, Johansson B, Corcoran M, Kuchinskaya E, Golovleva I,
Grandér D, et al. Characterisation of dic(9;20)(p11–13;q11) in childhood
B-cell precursor acute lymphoblastic leukaemia by tiling resolution array-
based comparative genomic hybridisation reveals clustered breakpoints at
9p13.2 and 20q11. 2. Br J Haematol 2006;135:492–9.
[18] Paulsson K, Heidenblad M, Mörse H, Borg A, Fioretos T, Johansson B.
Identification of cryptic aberrations and characterization of translocation
breakpoints using array CGH in high hyperdiploid childhood acute
lymphoblastic leukemia. Leukemia 2006;20:2002–7.
[19] van Vlierberghe P, Meijerink JP, Lee C, Ferrando AA, Look AT, van
Wering ER, et al. A new recurrent 9q34 duplication in pediatric T-cell
acute lymphoblastic leukemia. Leukemia 2006;20:1245–53.
[20] Lilljebjörn H, Heidenblad M, Nilsson B, Lassen C, Horvat A, Heldrup J,
et al. Combined high-resolution array-based comparative genomic hybri-
dization and expression profiling of ETV6/RUNX1-positive acute lym-
phoblastic leukemias reveal a high incidence of cryptic Xq duplications
and identify several putative target genes within the commonly gained
region. Leukemia 2007;21:2137–44.
[21] Hosoya N, Sanada M, Nannya Y, Nakazaki K, Wang L, Hangaishi A, et al.
Genomewide screening of DNA copy number changes in chronic mye-
logenous leukemia with the use of high-resolution array-based compara-
tive genomic hybridization. Genes Chromosomes Cancer 2006;45:
482–94.
[22] Patel A, Kang SH, Lennon PA, Li YF, Rao PN, Abruzzo L, et al. Validation
of a targeted DNA microarray for clinical evaluation of recurrent abnor-
malities in chronic lymphocytic leukemia. Am J Hematol 2007. Epub
ahead of print.
[23] Tyybakinoja A, Vilpo J, Knuutila S. High-resolution oligonucleotide
array-CGH pinpoints genes involved in cryptic losses in chronic lym-
phocytic leukemia. Cytogenet Genome Res 2007;118:8–12.
[24] Rubio-Moscardo F, Climent J, Siebert R, Piris MA, Martín-Subero JI,
Nieländer I, et al. Mantle-cell lymphoma genotypes identified with CGH
to BAC microarrays define a leukemic subgroup of disease and predict
patient outcome. Blood 2005;105:4445–54.
[25] Wessendorf S, Barth TF, Viardot A, Mueller A, Kestler HA, Kohlhammer
H, et al. Further delineation of chromosomal consensus regions in primary
mediastinal B-cell lymphomas: an analysis of 37 tumor samples using
high-resolution genomic profiling (array-CGH). Leukemia 2007;21:
2463–9.
[26] Kim WS, Honma K, Karnan S, Tagawa H, Kim YD, Oh YL, et al.
Genome-wide array-based comparative genomic hybridization of ocular
marginal zone B cell lymphoma: comparison with pulmonary and nodal
marginal zone B cell lymphoma. Genes Chromosomes Cancer 2007;46:
776–83.
[27] Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA, Siebert R, Climent
J, Fresquet V, et al. Homozygous deletions localize novel tumor sup-
pressor genes in B-cell lymphomas. Blood 2007;109:271–80.
[28] Fukuhara N, Tagawa H, Kameoka Y, Kasugai Y, Karnan S, Kameoka J,
et al. Characterization of target genes at the 2p15–16 amplicon in diffuse
large B-cell lymphoma. Cancer Sci 2006;97:499–504.
[29] Chen W, Houldsworth J, Olshen AB, Nanjangud G, Chaganti S, Venka-
traman ES, et al. Array comparative genomic hybridization reveals
genomic copy number changes associated with outcome in diffuse large
B-cell lymphomas. Blood 2006;107:2477–85.
[30] Largo C, Alvarez S, Saez B, Blesa D, Martin-Subero JI, González-García
I, et al. Identification of overexpressed genes in frequently gained/
amplified chromosome regions in multiple myeloma. Haematologica
2006;91:184–91.
[31] Largo C, Saéz B, Alvarez S, Suela J, Ferreira B, Blesa D, et al. Multiple
myeloma primary cells show a highly rearranged unbalanced genome with
amplifications and homozygous deletions irrespective of the presence of
immunoglobulin-related chromosome translocations. Haematologica
2007;92:795–802.
[32] Lindholm PM, Salmenkivi K, Vauhkonen H, Nicholson AG, Anttila S,
Kinnula VL, et al. Gene copy number analysis in malignant pleural
mesothelioma using oligonucleotide array CGH. Cytogenet Genome
Res 2007;119:46–52.
[33] Zanazzi C, Hersmus R, Veltman IM, Gillis AJ, van Drunen E, Beverloo HB,
et al. Gene expression profiling and gene copy-number changes in malignant
mesothelioma cell lines. Genes Chromosomes Cancer 2007;46:895–908.
[34] Schulten HJ, Perske C, Thelen P, Polten A, Borst C, Gunawan B, et al.
Establishment and characterization of two distinct malignant mesothe-
lioma cell lines with common clonal origin. Cancer Genet Cytogenet
2007;176:35–47.
[35] Rouleau E, Lefol C, Tozlu S, Andrieu C, Guy C, Copigny F, et al. High-
resolution oligonucleotide array-CGH applied to the detection and cha-
racterization of large rearrangements in the hereditary breast cancer gene
BRCA1. Clin Genet 2007;72:199–207.
[36] Melchor L, Honrado E, García MJ, Alvarez S, Palacios J, Osorio A, et al.
Distinct genomic aberration patterns are found in familial breast cancer
associated with different immunohistochemical subtypes. Oncogene
2007. Epub ahead of print.
[37] Johnson N, Speirs V, Curtin NJ, Hall AG. A comparative study of genome-
wide SNP, CGH microarray and protein expression analysis to explore
genotypic and phenotypic mechanisms of acquired antiestrogen resistance
in breast cancer. Breast Cancer Res Treat 2007. Epub ahead of print.
[38] Climent J, Garcia JL, Mao JH, Arsuaga J, Perez-Losada J. Characteriza-
tion of breast cancer by array comparative genomic hybridization. Bio-
chem Cell Biol 2007;85:497–508.
[39] Vincent-Salomon A, Gruel N, Lucchesi C, MacGrogan G, Dendale R,
Sigal-Zafrani B, et al. Identification of typical medullary breast carcinoma
J. Andrieux / Pathologie Biologie 56 (2008) 368–374372