Objectifs : - Appliquer la 2ème loi de Newton à la chute verticale

P4TP2 CHUTES VERTICALES D’UN SOLIDE
Objectifs :
-
Appliquer la 2ème loi de Newton à la chute verticale ;
-
Exploiter les courbes vG=f(t) ;
-
Evaluer un temps caractéristique ;
-
Déterminer une vitesse limite.
I. Chute libre dans l’air
1) Pointage vidéo de la chute
Sous latis, ouvrir le fichier vidéo
« bille_1_air.avi »
Paramétrage du pointage :
Sélectionner l’origine
Etalon Sélection,
Longueur 0,507m
Sens des axes
Sélection manuelle des points
Pointer les positions de la bille
Fermer la fenêtre et afficher les courbes :
Renommer Mouvement X et Mouvement Y par
y et z
2) Exploitation
Afficher les courbes y =f(t) z =f(t). Conclure.
Retirer y=f(t)
La hauteur de chute z(t) = h(t) est-elle proportionnelle au temps ? Justifier.
Modéliser z(t) par une fonction polynomiale de degrés 2 et noter son équation.
Quelle relation doit-on écrire pour calculer la valeur de la vitesse vn du point Gn, à partir des
ordonnées zn+1 et zn-1 et des dates tn-1 et tn+1 ? Faire l'application numérique pour v4 en glissant z(t)
dans le tableur
Calculer la dérivée de z(t) et glisser la dans le tableur. Comparer la valeur de la dérive de z(t) à la
valeur trouvée pour v4. Conclure et renommer la dérivée vz(t)
Modéliser vz(t) puis déterminer son expression en fonction de g et t.
En déduire l’accélération de la bille. Comparer les caractéristiques des vecteurs et . Conclure.
3) Étude théorique
Définir une chute libre.
Appliquer la deuxième loi de Newton et déterminer l'expression du vecteur accélération de la bille.
La bille est-elle en chute libre ? Justifier.
II. Chute d’une bille dans une solution aqueuse de glycérol
1) Pointage vidéo de la chute
Sous latis, ouvrir le fichier « Chute solution
glycerol.ltp »obtenu à partir d’un pointage vidéo.
2) Exploitations
Calculer vz(t) puis afficher la dans une
nouvelle fenêtre
Le graphe présente deux régimes : le régime
transitoire et le régime permanent. Sur le
graphe vz(t), indiquer la délimitation dans le
temps des deux régimes.
Lors du régime permanent, tracer
l'asymptote horizontale. Déterminer alors
sur le graphe la valeur de la vitesse limite,
notée vlim.
Tracer sur le graphe vz(t) la tangente à
l'origine. Elle coupe l'asymptote v = vlim en un point d’abscisse t = . Déterminer la valeur de
ce temps caractéristique
3) Etude du régime transitoire
En analysant l'évolution de la pente de la tangente au graphe vz(t), indiquer comment évolue
l'accélération a(t) de la bille
La bille est soumise à son poids et une force de sens opposé au vecteur vitesse de la bille. Faire
un schéma. Appliquer la deuxième loi de Newton et montrer que la valeur de la force exercée par le
fluide est
Comment évolue la valeur de F au cours du mouvement ? Justifier.
4) Etude du régime permanent
À partir de l'allure de vz(t) dans le régime permanent, indiquer quelle est la nature du mouvement.
Quelle est la valeur de l'accélération ? Donner alors une expression pour la valeur de la force F.
5) S’il reste du temps
La force comprend la résultante des forces de frottement et la poussée d'Archimède du
fluide sur la bille
Exprimer la norme de la poussée d’Archimède en fonction de la masse volumique ρ du glycérol,
du volume V de la bille et de g. Calculer sa valeur.
En déduire la valeur f de la force de frottement en régime permanent.
En régime permanent, la valeur poussée d'Archimède est-elle négligeable devant la valeur de f ?
On considère les 3 schémas ci-contre qui
correspondent aux 3 instants de la chute :
- instant initial ;
- instant en régime transitoire ;
- instant en régime permanent.
Associer chaque schéma à un l’instant
correspondant en justifiant votre choix.
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !