Energie Mécanique
1 - Energie
On dit qu'un système possède de l'énergie lorsqu'il peut fournir du travail. Si ce travail
consiste à déplacer ou déformer un autre système, on parle d’énergie mécanique. Ci-dessous
sont représentés quelques exemples de systèmes possédant de l’énergie mécanique.
Eau d'un barrage pouvant
faire tourner une turbine.
Ressort tendu de flipper
pouvant lancer une bille.
Marteau en mouvement
pouvant enfoncer un clou.
Comme le travail, l'énergie s'exprime en joules. On admettra que l'énergie d'un
système est la somme des énergies de ses différentes parties.
L'énergie mécanique se présente sous deux formes que nous allons étudier : énergie
cinétique et énergie potentielle.
2 - Energie cinétique
C'est la forme d’énergie que possède un système matériel en mouvement. Un marteau
en mouvement est d'autant plus efficace que sa masse est plus grande et sa vitesse élevée.
2.1 - Energie cinétique d'un point matériel :
Pour une masse ponctuelle m, dite point matériel, animée d'une vitesse de valeur v, on
démontre que l'énergie cinétique s'exprime par :
EC =
2
1m v 2
L’énergie cinétique est donc proportionnelle à la masse de l’objet en mouvement : à la même
vitesse, une masse deux fois plus grande aura deux fois plus d’énergie cinétique.
Elle varie aussi comme le carré de la vitesse : à 240 km.h-1, une automobile aura seize fois
plus d’énergie cinétique qu’à 60 km.h-1.
2.2 - Energie cinétique d'un système en translation :
Pour un système de masse M en translation dont le centre d'inertie G a une vitesse de
valeur vG, tous les points du système ont la même vitesse vG
.
En conséquence :
Ec =
2
1 m1 v1² +
2
1 m2 v2 ² +
2
1 m3 v3² + ...
Ec =
2
1 (m1 + m2 + m3 + ...). v
G
²
On en déduit EC =
2
1M vG²
Exemple :
Un palet de 500 g lancé à la vitesse de 2 m.s
-1
a pour énergie cinétique :
Ec =
2
1M v
G
² =
2
1x 0,5 x 4 = 1 J
Une voiture d'une tonne roulant à la vitesse de 72 km.h -1 a pour énergie cinétique :
Ec =
2
1M v
G
² =
2
1x 1000 x 400 = 2.105 J = 0,2 MJ .
3 - Energie potentielle
C'est la forme d'énergie d'un système liée à la position relative des différentes parties
de ce système. En se déformant, le système peut ainsi fournir du travail en perdant de
l’énergie potentiel ou recevoir du travail ce qui augmente son énergie potentielle.
G
VG
1
2
3
3.1 - Energie potentielle de pesanteur :
C'est celle du système formé par un objet de masse m et la Terre qui l'attire. La
déformation du système correspond ici à la distance entre l’objet et la Terre, donc à la cote z
de l'objet mesurée à partir d'une origine arbitraire.
Du fait de cette origine arbitraire, l'énergie potentielle n'est connue qu'à une constante
k près :
EP = m g z + k
En admettant que l'intensité de la pesanteur g
est constante (donc en se limitant à de faibles
variations d'altitude), lors de la variation de
cote de z initiale (zi) à z finale (zf), la variation
d'énergie potentielle dans ce cas est par
définition :
E p = Epf - Epi = m.g.(zf - zi)
On remarque que le travail du poids lors de ce
mouvement est tel que :
W(P) = mg (zi - zf)
(avec W(P) > 0 si zi > zf )
Le travail du poids est donc égal à l'opposé de la variation de l'énergie
potentielle de pesanteur du système :
W (P) = -
E
p
Exemple :
un objet de poids P
(verticale)
O
Z
z
z
z
z =0
h
Terre
C
P = mg
i
f
(m)
Exemple : un objet de poids 100 N,
élevé de 10 m, a une énergie potentielle
de pesanteur augmentée de :
Ep = 100.10 = 1 000 J.
3.2 - Energie potentielle élastique :
C'est celle que possède un système comprenant un ressort qui a été déformé (ressort
à lame, ou à boudin).
Le système est donc ici le ressort et ce qui l'a déformé (main, poussoir, etc.).
Ici, le travail W de la force qui provoque la déformation est égal à l'énergie potentielle
élastique du ressort. Pour un ressort à spires non jointives allongé ou raccourci de x mètres :
EP = W =
2
1k.x²
Exemple : un ressort de raideur k = 500 N.m
-1
, allongé (ou comprimé) de 20cm par rapport à sa
longueur au repos, possède une énergie potentielle élastique Ep =
2
1 x 500 x 4.10
-2
=10 J
4 - Energie mécanique d'un système
4.1 - Définition :
L'énergie mécanique d'un système égale à la somme de son énergie potentielle
et de son énergie cinétique.
E
M
= E
C
+ E
P
4.2. - Conservation de l'énergie mécanique :
a) Rappel
Observation : Appuyons sur une gomme : le doigt s'enfonce. Si on supprime la
pression, la force de réaction de la gomme lui redonne sa forme initiale. Recommençons
l'expérience avec de la pâte à modeler : elle reste déformée.
l°
l
x
F
l
x
F
F
x
On appelle force conservative une force dont les effets sont réversibles et dont le
travail ne dépend que de l'état initial et final.
Le poids, la tension d'un ressort sont des forces conservatives. Les forces de
frottement sont des forces non conservatives, également appelées forces dissipatives.
b) Principe :
L'énergie mécanique d'un système pseudo-isolé est constante si toutes les
forces intérieures sont conservatives.
Exercice résolu n°1
Énoncé :
Soit le système formé par un ressort
de flipper (raideur 50 N.m-1) comprimé de
10 cm et par une bille (masse 150 g).
Calculer la vitesse d'éjection de la bille en supposant le mouvement horizontal.
Solution :
Le système (bille + ressort) peut être considéré comme pseudo-isolé. Si le mouvement est
horizontal, la pesanteur n'intervient pas, l'énergie mécanique ne fait intervenir que l'énergie
potentielle élastique du ressort et l'énergie cinétique de la bille.
EM = 0 ;
Ep = -(1/2) k.x² ;
Ec =(1/2) m.v² ;
E =
Ep +
Ec = (1/2) m.v² -(1/2) k.x² = 0 ;
v² = (k.x²/m) ; v =(k.x²/m)1/2 ; v = (50 x 10-2/0,15) 1/2; v = 1,8 m.s-1
Exercice résolu n°2
Énoncé :
Un cycliste de masse 80 kg aborde à la vitesse de 30 km.h-1 une descente
de pente 8% et de longueur 300 m. Quelle vitesse atteint-t-il en bas de la
descente s'il ne freine pas ? (g = 10 m.s-2). Le niveau de référence de l'énergie
potentielle sera pris en bas de la pente.
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !