chap15-diffraction-modele_ondulatoire_lumiere_exos_1smp

1
1SMP Cours Physique
Chap 15 : DIFFRACTION des ONDES (et le modèle ondulatoire de la lumière) : exercices
Exercice 1 : ONDES ASSOCIEES A UNE ECLIPSE
Des chercheurs du CEA de l’équipe d’Elisabeth Blanc viennent d’annoncer qu’une éclipse n’a pas pour seul effet une baisse de la
luminosité. Lors de l’éclipse du Soleil du 11 août 1999, à 12 h 16 précises, l’ombre de la Lune commence sa traversée de la France à
la vitesse de 2850 km.h 1 sur un axe Cherbourg-Strasbourg. Sur son passage, la température de l’air chute rapidement d’environ 5
°C. Le déplacement de cette zone froide, à la même vitesse que celui de l’ombre (…), engendre dans son sillage des ondes
transversales dont la fréquence est largement inférieure à 20 Hz. D’après la revue Les Défis du CEA - n° 97 octobre-novembre 2003
1. Ondes créées lors de l’éclipse
1.1. Définir une onde.
1.2. Dire, en justifiant la réponse, si les ondes créées lors de l’éclipse peuvent être sonores.
2. Caractéristiques des ondes créées
L’équipe en charge du projet a pu détecter à faible altitude, une série d’ondes dont la période moyenne est de l’ordre de 10 minutes et
la célérité moyenne est de l’ordre de 100 km.h 1.
2.1. Vérifier que la fréquence de l’onde est effectivement largement inférieure à 20 Hz.
2.2. Ces ondes peuvent-elles être diffractées par des montagnes séparées par une distance de 10 km ? Justifier la réponse.
Exercice 2 : LE CHIEN et LA POULE
C'est la fin de l'été, il fait lourd et chaud. Toby le chien et Cocot la poule conversent.
Toby : « Le temps est à l'orage. J'entends le tonnerre au loin. » Cocot : « Le tonnerre ? Je n'entends rien. Tu vas bien Toby ? »
Toby : « Je l'entends te dis-je ! »
Quelques instants plus tard, l'orage s'étant rapproché, les deux animaux entendent le tonnerre gronder.
Cocot : « Nom d'un chien. Comment as-tu su ? À ma connaissance l'air n'est pas considéré comme un milieu dispersif. »
Toby : « Ce n'est pas au fait que le milieu de propagation soit ou non dispersif. Vois-tu, lorsque le tonnerre gronde, des sons de
toutes fréquences sont émis. Dans l'air, les sons s'atténuent d'autant plus que leur fréquence est élevée ; les sons de basse fréquence
sont perçus à des distances bien supérieures à ceux de fréquence plus importante. »
1. Définir un milieu dispersif. Définir un milieu absorbant.
2. Justifier par une expérience (ou situation) simple que l’air n’est pas un milieu dispersif pour les ondes sonores.
3. D’après le texte, l’air est-il un milieu absorbant pour les ondes sonores ?
4. En s'aidant des domaines de fréquences audibles représentés ci-dessous, préciser lequel des deux animaux :
a) entend les sons les plus graves ; b) entend les sons les plus aigus.
5. Dire pourquoi Toby peut entendre le tonnerre gronder au loin alors que Cocot ne le peut pas.
6. Calculer la longueur d'onde correspondant au son le plus grave entendu par la poule.
Données : Célérité du son dans l'air : v = à connaître !On rappelle que plus la fréquence d'un son est élevée, plus le son est aigu.
Fréquences audibles par la poule et le chien :
Exercice 3 : ECHOGRAPHIE du CŒUR
Des ondes ultrasonores de fréquence 2,00 MHz sont utilisées pour réaliser
l’échographie du coeur. Dans les tissus cardiaques, leur vitesse de propagation
est de l’ordre de 1,5 km/s.
1. Quelle est la nature des ondes ultrasonores ?
2. Pourquoi ces ondes ne sont-elles pas audibles ?
3. Quelle est leur longueur d’onde dans les tissus cardiaques ?
4. Ces ondes peuvent-elle être diffractées par le coeur ? Pourquoi ?
5. Lorsqu’elles se propagent dans l’air, quelles sont les caractéristiques qui
sont modifiées : vitesse, fréquence, longueur d’onde, période ?
od : oreillette droite og : oreillette gauche
vd : ventricule droit vg : ventricule gauche
2
Exercice 4 : LA LUMIÈRE : UNE ONDE
Le texte ci-dessous retrace succinctement l'évolution de quelques idées à propos de la nature de la lumière.
Huyghens (1629-1695) donne à la lumière un caractère ondulatoire par analogie à la propagation des ondes à la surface de l'eau et
à la propagation du son. Pour Huyghens, le caractère ondulatoire de la lumière est fondé sur les faits suivants:
- « le son ne se propage pas dans une enceinte vide d'air tandis que la lumière se propage dans cette même enceinte. La lumière
consiste dans un mouvement de la matière qui se trouve entre nous et le corps lumineux, matière qu'il nomme éther».
- « la lumière s'étend de toutes parts et, quand elle vient de différents endroits, même de tout opposés , les ondes lumineuses se
traversent l'une l'autre sans s'empêcher »
- « la propagation de la lumière depuis un objet lumineux ne saurait être par le transport d'une matière, qui depuis cet objet s'en
vient jusqu'à nous ainsi qu'une balle ou une flèche traverse l'air ».
Fresnel (1788-1827) s'attaque au problème des ombres et de la propagation rectiligne de la lumière. Avec des moyens rudimentaires,
il découvre et il exploite le phénomène de diffraction. Il perce un petit trou dans une plaque de cuivre. Grâce à une lentille constituée
par une goutte de miel déposée sur le trou, il concentre les rayons solaires sur un fil de fer.
Extraits d'articles parus dans l'ouvrage « Physique et Physiciens » et dans des revues « Sciences et Vie ».
de toutes parts = dans toutes les directions sans s'empêcher = sans se perturber
de tout opposés = de sens opposés ne saurait être = ne se fait pas
1. Questions sur le texte
1.1. Quelle erreur commet Huyghens en comparant la propagation de la lumière à celle des ondes mécaniques (comme le son) ?
1.2. Citer deux propriétés générales des ondes que l'on peut retrouver dans le texte de Huyghens.
1.3. Fresnel a utilisé les rayons solaires pour réaliser son expérience. Une telle lumière est-elle mono- ou poly-chromatique ?
1.4. Fresnel exploite le phénomène de diffraction de la lumière par un fil de fer. Le diamètre du fil a-t-il une importance pour observer
le phénomène de diffraction? Si oui, indiquer quel doit être l'ordre de grandeur de ce diamètre.
2. Diffraction
On réalise une
expérience de diffraction
à l'aide d'un laser
émettant une lumière
monochromatique de
longueur d'onde λ.
À quelques centimètres
du laser, on place
successivement des fils
verticaux de diamètres
connus. On désigne par
a le diamètre d'un fil.
Pour chacun des fils, on
mesure la largeur L de la
tache centrale.
À partir de ces mesures et des données, il est possible de calculer l'écart angulaire θ du faisceau diffracté (voir figure 1).
2.1. L'angle θ étant petit, θ étant exprimé en radian, on a la relation : tan θ ≈ θ.
Donner la relation entre L et D qui a permis de calculer θ pour chacun des fils.
2.2. Donner la relation liant θ, λ et a. Préciser les unités de θ, λ et a.
2.3. On trace la courbe θ = f (1/a) (figure 2) : Montrer que la courbe obtenue est en accord avec l'expression de θ donnée au 2.2.
2.4. Comment, à partir de la courbe précédente, pourrait-on déterminer la longueur d'onde λ de la lumière monochromatique utilisée ?
2.5. En utilisant la figure 2, déterminer la valeur de la longueur d’onde de la lumière utilisée.
2.6. Si l'on envisageait de réaliser la même étude expérimentale en utilisant une lumière blanche, on observerait des franges irisées
(colorées). En utilisant la réponse donnée à la question 2.2., justifier succinctement l'aspect «irisé» de la figure observée.
3. Dispersion
Un prisme est un milieu dispersif : convenablement éclairé, il décompose la lumière du faisceau qu'il reçoit.
3.1. Quelle caractéristique d'une onde lumineuse monochromatique est invariante quel que soit le milieu transparent traversé ?
3.2. Donner la définition de l'indice de réfraction n d'un milieu homogène transparent, pour une radiation de fréquence donnée.
3.3. Rappeler la définition d'un milieu dispersif.
Pour un tel milieu, l'indice de réfraction dépend-il de la fréquence de la radiation monochromatique qui le traverse?
3.4. À la traversée d'un prisme, lorsqu'une lumière monochromatique de fréquence donnée passe de l'air (d'indice na = 1) à du verre
(d'indice nv> 1), les angles d'incidence (i1) et de réfraction (i2), sont liés par la relation de Descartes-Snell: sin(i1) = nv sin(i2)
Expliquer succinctement, sans calcul, la phrase « Un prisme est un milieu dispersif : convenablement éclairé, il décompose la lumière
du faisceau qu'il reçoit ».
La figure de diffraction obtenue est observée sur un
écran blanc situé à une distance D = 1,60 m des fils.
3
Exercice 5 : LE LASER
Les CD et les DVD conventionnels
utilisent respectivement des lasers
infrarouges et rouges.
Les disques Blu-ray fonctionnent d'une manière similaire à celle des CD et des DVD. Le laser d'un lecteur blu-ray émet une lumière
de longueur d'onde différente de celles des systèmes CD ou DVD, ce qui permet de stocker plus de données sur un disque de même
taille (12 cm de diamètre), la taille minimale du point sur lequel le laser grave l'information étant limitée par la diffraction. Pour
stocker davantage d'informations sur un disque, les scientifiques travaillent sur la mise au point d'un laser ultra violet.
Donnée : On prendra ici pour la célérité de la lumière dans le vide et dans l'air : c = à savoir ofcourse !
1.1. Quel est le nom du phénomène physique responsable de l'irisation d'un CD ou d'un DVD éclairé en lumière blanche ?
1.2. Calculer la valeur de la fréquence f de la radiation utilisée dans la technologie blu-ray.
1.3. Comparer la longueur d'onde du laser blu-ray à celle des systèmes CD ou DVD.
2. On veut retrouver expérimentalement la longueur d'onde λD
de la radiation monochromatique d'un lecteur DVD.
On utilise pour cela le montage de la figure 1 ; a étant le
diamètre du fil,
le demi- écart angulaire.
2.1. Expression de
2.1.1 Etablir la relation entre
, L (largeur de la tache
centrale de diffraction) et D (distance entre le fil et l'écran).
2.1.2 On supposera
suffisamment petit pour considérer
tan
avec
en radian. Donner la relation entre
,
D et a
en indiquant l'unité de chaque grandeur.
2.1.3 En déduire une relation entre
D , L, D et a.
2.2. Détermination de la longueur d'onde
D de la radiation d'un laser de lecteur DVD
Pour la figure de diffraction obtenue avec un laser « DVD », on mesure L = 4,8 cm.
On remplace alors le laser « DVD » par le laser utilisé dans le lecteur blu-ray sans modifier le reste du montage, on obtient une tache
de diffraction de largeur L' = 3,0 cm.
A partir de ces deux expériences, calculer la valeur de la longueur d'onde D de la radiation monochromatique d'un lecteur DVD et la
comparer au résultat de la question 1.3.
3. Dispersion
Un CD est constitué de polycarbonate de qualité optique dont l'indice de réfraction est n = 1,55 pour la radiation lumineuse utilisée
dans le lecteur CD.
3.1. Soit v la vitesse de la radiation dans le polycarbonate, donner la relation entre les grandeurs physiques n, c et v.
3.2. Quelle grandeur caractéristique de la radiation du laser n'est pas modifiée lorsque son rayon passe de l'air dans le disque ?
3.3. Détermination de la longueur d'onde
d'un laser CD.
Le laser utilisé pour lire les CD a une longueur d'onde
C = 780 nm dans le vide. Déterminer la longueur d'onde
du laser CD dans le
polycarbonate.
Simple face 700 MB 4,7 GB 25 GB Capacité de
Stockage en Bit
Double face 8,5 GB 50 GB
disque
laser
zone
non gravée
zone gravée
Zoom sur la zone
gravée et le spot laser
1,2 mm
0,1 mm
0,6 mm
0,1 mm
Coté étiquette Coté étiquette Coté étiquette
D
Laser DVD
Figure 1
L
Ecran
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !