1
Chapitre 5 Magnétisme et Ondes Electromagnétique.
I Introduction
A) Sources du champ magnétiques :
- Les éléments naturels ferreux (Magnétite)
B) Utilisation du Champs magnétique
- La Boussole : orientation d’un aimant.
- Les aimants magnétiques
- Utilisation pour la RMN :
- Sur des êtres humains : 0,1 à 11,7 T.
- Sur des animaux : 2 à 17,2 T.
- Sur des molécules : 2 à 23 T.
C) Caractéristique du champ magnétique
- Unité : Le Tesla, noté « T ».
Sur Terre, le champ magnétique est de 0,5 mT. L’orientation de champ magnétique n’est
pas fixe, il a, au cours de l’évolution, changé de place.
- Le champ magnétique au point M diminue lorsqu’on éloigne ce point M de la source.
- On peut visualiser le champ magnétique en positionnant de la limaille de fer dans un champ.
- Un champ magnétique est formé par induction de la part d’un courant électrique.
Partie I Rappels sur le Magnétisme.
I Champs magnétiques crées par les courants
A) Loi de Biot & Savard.
- Tout circuit parcouru par un courant électrique d’intensité I crée par induction, un champ
magnétique B.
- Plus on s’éloigne du circuit, plus l’intensité de champs magnétique est faible.
- La loi de Biot & Savard peut être représentée par la formule suivante :
- L’intensité électrique du champ magnétique B décroit avec la distance 1/r² et s’annule à l’infini.
 
 

 
Avec - U0 = Perméabilité magnétique dans le vide. Cette valeur est reliée à la permittivité
électrique dans le vide par la relation ε0U0c² = 1
- I = Intensité électrique (en A)
- r = Distance entre le point d’observation et le circuit électrique (en m.)
- dl = Portion du circuit électrique qui produit le champ magnétique B
B) Exemple d’une bobine
- On calcule l’intensité du champ magnétique B au centre de la bobine.
  
 Dans le cas d’un solénoïde à N spires,   

2
II Les conséquences de l’induction magnétique
A) Force de Lorentz
- C’est la première force qui est créée par le champ magnétique.
- Cette force est la force subie par une charge ponctuelle en déplacement qui est plongé dans un
champ électrique et magnétique.
- La force de Lorentz peut être représentée par la formule suivante :
   
- Lorsque le fil est linéaire, θ = 0°
Avec q = Charge
E = Intensité du champ électrique
v = vitesse de la particule chargée.
B = Intensité du champ magnétique
θ : Angle entre le vecteur vitesse et le champ magnétique.
- Cette formule présente deux parties :
- Force électrostatique : Fe = qE
- Force magnétique : Fm = q(v.B.sin(θ))
B) Force de Laplace
- La force de Laplace est la force subie par un portion d’un circuit électrique et créée par l’interaction
entre le Champ magnétique et le courant électrique (plus précisément avec les électrons en
déplacement dans le courant électrique.)
- Cette force de Laplace est perpendiculaire au champ magnétique B.
- Elle peut être représentée par la formule suivante :
   
Avec dl : Portion du circuit subissant la force de Lorentz
θ : Angle entre la portion du circuit et l’orientation du vecteur B.
C) Effet HAL
- C’est l’effet à la base de tous les phénomènes magnétiques.
- On a une plaque présentant une surface S, une largeur a et une longueur b. Cette plaque est
traversée par un courant électrique I et est plongé dans un champ magnétique B.
- On observe que dans cette plaque, les charges + et vont se répartir par charges de part et d’autre
de cette plaque, et va engendrer un ddp notée « U » et qui est la Tension de Hall. La relation de
cette ddp peut être représentée par la formule :
  

Avec - n = nombre de charges
- e = Force électromotrice (fem)
Rq : On prendra « n.e.b » assez petit car, dans le cas des métaux, plus « neb » est petit, plus la vitesse
de électrons est grande.
3
D) Le Flux magnétique & La Force électromotrice.
- Le Flux c’est le Débit de quelque d’une sur grandeur sur une surface. (Flux Massique, Flux
Volumique…)
- Ici, le flux magnétique, noté Φ, est défini par la relation suivante :
  
Avec S : Surface dans laquelle passe le courant magnétique.
θ : Angle entre la droite perpendiculaire à S et passant par son centre et le champ
magnétique B.
- Ce flux magnétique, lorsqu’il est variable, engendre une force électromotrice sur le pourtour de sa
face.
  

- Une fem est également induite lorsque l’on déplace une tige en fer de longueur L selon un vecteur
vitesse v perpendiculaire au vecteur champ magnétique B.
   
- On remarque que dans le cas de la tige de fer, le vecteur vitesse est colinéaire à la force de Lorentz.
E) Loi de Lenz
4
Partie II : Les Ondes électromagnétiques
I Introduction des OEM
A) Caractéristiques des OEM
- Une OEM est une onde qui transporte de l’énergie mais pas de matière.
- Elle est la conséquence de la propagation d’un champ électromagnétique et présente :
- une forme de propagation transversale
- une vibration périodique qui est sinusoïdale.
- Ces OEM sont le siège de ce qu’on nomme la dualité onde-corpuscule qui fait le lien entre Physique
Classique (qui associe les OEM à seulement des ondes immatérielle) et la Physique quantique (qui
assimile l’onde à un ensemble de particules que l’on nomme Photon.)
B) Utilisation de l’induction magnétique
- L’induction magnétique est un phénomène qui est indispensable à la période actuelle. Elle est le
principe de base du fonctionnement des centrales électriques qui usent de cette relation entre Flux
magnétique et intensité électrique.
- La variation de l’aimantation nucléaire dans des tissus permet d’être visualisée par la production
d’un signal RMN. Cette technique est la base de l’IRM.
II Les Equations de Maxwell
- Les équations de Maxwell sont une des 4 lois fondamentales de l’électromagnétisme. Elles
permettent de prédire l’existence des OEM qui résultent de la production de deux champs :
- Le Champs Electrique
- Le Champs Magnétique.
- Cette découverte de la composition du champ électromagnétique est due à Hertz en 1887.
A) Ondes planes
- Les OEM sont des ondes planes qui sont produites par des charges accélérées et qui se déplacent
selon une direction unique : Le Champs B et le Champs E suivent tous les deux une même direction
que l’on définira selon l’axe x d’un repère cartésien défini au préalable.
- La Vitesse de propagation de ces OEM se fait à la vitesse de la lumière notée « c »
qui vaut 3.108m.s-1.
- La vitesse de la lumière c est reliée à la permittivité électrique dans le vide ε0 et la perméabilité
électrique dans le vide µ0 par la relation :
 

Avec ε0 = 8,83.10-12 SI
µ0 = 1,26.10-26 SI
B) Ondes planes sinusoïdales.
- Les variations (= amplitudes) des deux champs composants des OEM présentent des directions
perpendiculaires. Selon l’axe y ou z (selon le plan cartésien défini précédemment.)
5
- Les valeurs des champs électriques et magnétiques peuvent être représentées par :
C) La relation entre B et E.
- E et B sont perpendiculaire l’un à l’autre mais se dirige dans la même direction x telle qu’ils forment
un trièdre direct : E = c.B
- La polarisation d’une OEM telle que la lumière est donnée par l’axe ou le plan selon lequel varie
l’amplitude du champ électrique.
II Les Ondes dans la matière
A) Caractéristiques des OEM
Caractéristiques
Relation
Amplitude A
Pulsation ω
  
Fréquence ν
 

Période T
 
Longueur d’onde – λ
  
Nombre d’ondes – k
  
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !