
ESISAR
RIVOIRARD / GUERIN Page 4/10 avril 17
II ) Partie I
Dans ce TP, nous avons échantillonné un signal temporel continu, puis calculé sa
transformée de Fourier discrète ( TFD ) à partir de ces échantillons. Pour vérifier que notre
algorithme fonctionne, nous avons, à partir du spectre calculé, recalculer le signal temporel.
Notre algorithme fonctionne si les deux signaux temporels ( celui d’origine et celui recalculé )
sont identiques.
Voici nos
résultats :
Notre algorithme
marche donc bien
puisque l’on
retrouve bien notre
signal originel en le
reconstruisant à
partir de son spectre
calculé par TFD.
Nous pouvons évaluer le temps de calcul de notre transformée de Fourier en comptant
le nombre de multiplications effectuées par notre algorithme de calcul de spectre :
Nombre de multiplications dans la TFD (2*128^2) : 81920
Et voici l’évolution
de ce nombre de
multiplications en
fonction du nombre
d’échantillons pris
en compte dans le
calcul. La
croissance est en x²
ce qui laisse
imaginer la
complexité des
calculs pour obtenir
une précision
acceptable.