Définition : La recherche locale guidée (GLS) est un algorithme métaheuristiques dont le
but est d'aider la recherche locale pour échapper à des optima locaux.
Les métaheuristiques : sont généralement des algorithmes stochastiques itératifs, qui
progressent vers un optimum global, c'est-à-dire l'extremum global d'une fonction, par
échantillonnage d’une fonction objectif. Elles se comportent comme des algorithmes de
recherche, tentant d’apprendre les caractéristiques d’un problème afin d’en trouver une
approximation de la meilleure solution (d'une manière proche des algorithmes
d'approximation).
Domaine d’application: La méthode de recherche locale guidée a été appliquée avec succès
à un certain problème d’optimisations difficiles comme le problème du voyageur de
commerce (TSP) et problème d'affectation quadratique (QAP).
ALGORITHME DE RECHERCHE LOCALE GUIDÉE
1. Choisir une solution s S; poser s*:=s;
2. Tant qu’aucun critère d’arrêt n’est satisfait faire
3. Appliquer une Recherche Locale à s avec f’ comme fonction objectif; soit s’ la
solution ainsi obtenue;
4. mettre à jour les poids wi
5. Poser s:=s’;
6. Si f(s) < f(s*) alors poser s*:=s
7. Fin du tant que
Pour ce faire, notons {A1,…,Am} un ensemble de m attributs utilisés pour discriminer
les solutions de S.
Pour le problème du voyageur de commerce, on peut par exemple associer un attribut
à chaque arête du graphe et dire qu’une tournée possède l’attribut A si l’arête e fait
partie de la tournée.
Soit wi le poids de l’attribut Ai.
Et soit d 𝟲i(s)une variable qui vaut 1 si s possède l’attribut Ai, et 0 sinon.
ʎ est un paramètre qui permet de faire varier l’importance du deuxième terme de cette
fonction.
Les Avantages :
Simple à utilisée puisqu’elle est basée sur un principe simple.
Il s’applique à un grand nombre de problèmes d’optimisation combinatoire
Elle est efficace : les meilleures solutions sont obtenues en un temps de calcul modéré.
les inconvénients:
· Elle est souvent moins puissante que des méthodes exactes sur certains types de
problèmes.
· Elle ne garantie pas non plus la découverte d’un optimum global en un temps fini.
1 / 1 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !