Fiche n°7 : Transmission et pertes en optiques : Expression

Cours TRC2 – Les fibres optiques
1- Rappel sur la réflexion totale
La loi de Descartes définit l'angle θ2 d'une onde lumineuse dans un matériau
d'indice n2 en fonction de l'angle d'entrée θ1 dans un matériau d'indice n1 :
2211 sin.sin.
θ
θ
nn =
2- réflexion totale
Si n1>n2 alors n1/n2>1 et il est possible de trouver des angles θ1 que
1
2
1 sin
n
n1>
θ
. Or par définition. Cette impossibilité mathématique traduit
le fait qu'il n'y a pas de rayon transmis tout est réfléchi. On parle alors de réflexion
totale.
1sin 2
θ
3- Angle limite
Lorsque n1 >n2 l'angle 1
sin
θ
<2
sin
θ
et donc l'angle 12
θ
θ
>. Il existe donc un angle particulier 1
θ
appelé angle
limite pour lequel 2
2
π
θ
=(1sin 2=
θ
). Il vérifie: 1
2
lim1
sin n
n
=
θ
.
Au-delà de cet angle il y a réflexion totale. Quel est l'intérêt de ce phénomène ?
4- Principe du guidage optique
Le principe de la réflexion totale peut être appliqué pour réaliser des éléments
qui guident la lumière. Il suffit pour cela de placer un matériau d'indice n1 entre
deux matériaux d'indice n2<n1 et d’avoir de la lumière suffisamment rasante
pour qu’elle soit toujours au-delà de l’angle limite.
Les ondes lumineuses arrivant à l'interface n1/n2 avec des angles rasants
supérieurs à l'angle limite sont réfléchies totalement. Pour guider la lumière il
suffit donc de placer au dessus de la couche de matériau d'indice n1, une autre
couche d'indice n2 afin de reproduire la réflexion totale. De réflexion totale en
réflexion totale, l'onde se propage dans la direction z. On dit que l'onde est
guidée dans le matériau d'indice n1.
figure 3 : Principe d’un guide
d’onde optique
5- Cône d’injection
Si la lumière arrive sur l'interface avec un angle θ1 inférieur à
θ1limite il y a transmissions dans le matériau 2. En revanche si θ1est
supérieur à θ1limite alors il y a réflexions totales multiples et
guidage. Une fois la lumière présente dans le guide elle se
propage mais comment l'y introduire ?
Imaginons une fibre optique réalisée sur le principe décrit ci-
dessus avec un matériau d'indice n1 entouré de matériau d'indice
n2. Comment y injecter de la lumière ?
Calculons tout d’abord l’angle αlimite associé à l’angle θ1limite.
Un faisceau de lumière rentre dans la fibre avec un angle α0 par rapport à la normale à la surface. Puisque il y a un changement de
milieu appliquons le principe de Descartes et calculons l'angle α0.
En appliquant le principe de Descartes l'angle dans le matériau d'indice n1 est α1 et vérifie : et
11
0
0sinsin
αα
n n =11 2
θ
π
α
= .
Pour l'angle limite on a : limite limite 11 2
θ
π
α
= . soit
(
)
(
)
limite limite limite limite n
n
n
n
n
n1110 cos
0
1
2
sin
0
1
sin
0
1
sin
θθ
π
αα
=== d'où
()
(
)
2
1
2
01
2
1
0
1
sin1
0
1
sin n
n
n
n
n
nlimite limite ==
θα
.
En première approximation n0 l'indice de l'air est à peu près égal à l'indice du vide n0=1 : 2
2
2
1
2
1
2
011sin nn
n
n
n
limite =
=
α
Matériau 1
Indice n1
Matériau 2
Indice n2
θ
1
θ
2
Matériau 1
Indice n
Matériau 2
Indice n2
θ
1
θ
2
θ
1
Conclusion : pour injecter de
la lumière dans une fibre, il
faut que le faisceau lumineux
arrive dans un cône d'angle
α0 limite sinon la lumière est
transmise dans le fibre avec
un angle trop petit sur les
surfaces séparant n1 et n2 et il
n'y a pas réflexion totale.
6- Ouverture numérique
L'ouverture numérique est égale au sinus du demi angle du cône d'acceptance. Plus N est grand (α0 grand) plus
on peut rentrer de la lumière.
(
)
22
10 2
nn sinnN limite 0 ==
α
7- Les fibres optiques multimodes
Une fibre optique multimodes est une
fibre en verre de section circulaire dont le
cœur c'est-à-dire la partie centrale où se
propage la lumière a un diamètre grand
devant la longueur d'onde. On peut donc
les étudier de façon simplifiée mais
correcte par l'optique géométrique.
8- Gaine et Cœur
Le type le plus simple est la fibre optique à
saut d’indice ou le cœur (la partie centrale de
la fibre) d’indice de réfraction n1 est entouré
d'une gaine optique d'indice n2 légèrement
inférieur. Le diamètre du cœur est 2a=52µm,
pour un diamètre total (gaine) de 2b=125µm.
L'ensemble est entouré d'un revêtement de
protection généralement en matière plastique
de 250µm.
Schéma de principe d'une fibre optique:
gaine=125µm;
revêtement =250µm
Multimode(MM):
cœur =52µm ou 60µm;
Monomode(Single mode SM):
cœur =9µm
9- La dispersion modale
Comparons deux impulsions présente
à to à l'extrémité d'une fibre de
longueur L, et d'ouverture numérique
ON. L'une des impulsions se propage
suivant l'axe de symétrie de
révolution de la fibre (angle nul),
tandis que la deuxième arrive avec un
angle égale à l'angle limite.
Ces deux impulsions vont donc avoir des trajets différents. Celle qui se propage suivant l'axe aura le trajet le
plus court (longueur L, vitesse c/n1). En revanche, l'impulsion caractérisée par un angle θ1limite , se propagera
sur une longueur effective:
()
ite
effective L
Lli
m
1
sin
θ
=
Le retard entre la première impulsion et la dernière est : c
LL
nt effective
=1 soit
()
=1
sin 1
lim1
1
ite
L
c
n
t
θ
en remplaçant θ1limite par son expression il vient :
()
21
2
1nn
n
n
c
L
t
=
En réalité quand une impulsion est présente à l'entrée d'une fibre, tous les angles d'incidences compris entre 0
et θ0 existent. En sortie de fibre, chaque trajet lumineux caractérisé par un angle différent subit un retard
différent compris entre 0 et t. L'impulsion de départ se trouve donc élargie de t, indépendamment de la
largeur de son impulsion initiale. C'est cet étalement de l'impulsion qui est désigné par dispersion modale.
Chaque trajet différent étant un mode.
10- Influence de la dispersion modale sur la bande passante
Les conséquences sont énormes en terme de bande passante. En effet, supposons que chaque impulsion
corresponde à un bit d'un signal à transmettre. La durée entre deux bits doit être au supérieure ou égale à t,
sinon chaque impulsion se voit de toute façon élargie de t au bout d'une longueur de fibre L. Le risque est
alors que les bits successifs se chevauchent et créent des erreurs dans la transmission. Le débit de la ligne de
transmission est donc limité à 1/t bits par secondes.
Le débit maximum est donc :
()
21
2
mod 11
1nn
n
L
c
t
Bn
aledispersion
=
=
Il est à noter que ce débit diminue lorsque la longueur de la fibre augmente. Ce qui signifie qu'il est difficile
par ce procédé de transmettre des hauts débits sur des grandes distances.
10- Les fibres à gradient d’indice
C'est la raison pour laquelle une seconde
génération de fibre à vue le jour; Les fibres
à gradient d'indice ont été spécialement
conçues pour minimiser cet effet de
dispersion modale. Dans ce type de fibre,
l'indice optique du cœur diminue de l'axe
jusqu'à la gaine, suivant une loi parabolique
de sorte que les faisceaux lumineux
voyageant suivant des trajets géométriques
différent subissent des chemins optiques
identiques.
L'indice du cœur à une distance r de l'axe est la loi parabolique:
()
2
121
= a
r
nrn avec =2
1
2
2
2
12n
nn soit 1
21 nnn
L
es rayons lumineux suivent des trajectoire d'allure sinusoïdale, et ceux ayant le trajet géométrique le plus long
(
2) passent par des milieux d'indice plus faible, donc de vitesses supérieures. Par ce procédé on égalise les
t
emps de propagation (1) et (2).
11- Les fibres monomodes
Ce sont des fibres dont la dimension du cœur est comprise entre 1 a 9µm. Pour les modéliser la loi de
Descartes ne suffit pas et on doit faire appel aux équations de propagation résultat des équations de Maxwell.
Les fibres monomodes, sont conçues pour guider pratiquement sans perte la lumière a une longueur d'onde
bien précise. Dans ce cas il n'y a plus de dispersion modale. La dispersion chromatique est en revanche
marquée.
12- Atténuation et amplification d'une onde lumineuse
Qu'est ce que l’amplification ou l’atténuation d’une onde lumineuse ?
Lorsqu’une onde kztj
eEt
=
ω
ε
.)(
d’amplitude E et de fréquence ω est
amplifiée, c’est son amplitude E qui
augmente. L’amplitude devient alors
E+
E
après que l’onde a progressé d’une
distance
z dans le milieu
amplificateur. Si g est le gain de
l’amplification optique on a :
zE
g
E=..
et donc gE
dz
dE =
ce qui nous donne une expression de l’amplification du gain en fonction de l’épaisseur du milieu amplificateur :
(
)
gz
oeEzE =
L’amplitude de l’onde dépend de z, ce qui paraît naturel puisque, plus l’épaisseur du milieu amplificateur est
grande, plus l’amplitude de l’onde est grande. C’est une amplification exponentielle. L’onde électromagnétique
s’écrit alors :
(
)
(
)
kztjgz
oeeEt
=
ω
ε
.. .
Remarque :L'intensité lumineuse I (carré du module de
ε
ou encore ) s'écrit :
*
.
εε
=I
()
gz
IzI 2
0exp.=avec
2
00 EI =
Remarque : si au lieu d’une amplification, il y a atténuation (par exemple de l'absorbtion) on remplace 2g par
α
(
α
positif pour l'atténuation et
α
négatif pour de l'amplification).
()
z
IzI
α
=exp.
0. (Loi de Beer-Lambert)
13- Notation complexe de l'indice de réfraction
On peut réécrire l'onde lumineuse en faisant apparaître l'indice de réfraction :
()
()(
kztjz
oeeEt
=
ωα
ε
..
)
⇔ ⇔
()
()()
zjktj
oeEt
αω
ε
.
.
=
()
=zj
c
n
tj
oeEt
α
ω
ω
ε
.
()
=z
c
jn
c
tj
oeEt
ω
α
ω
ω
ε
.
On définit l'indice complexe "
~
jnnn = avec k
c
n
α
ω
α
==" appelé coefficient d'extinction et noté
ω
ακ
c
=
14- Conversion Log-Lin
Remarque : L'atténuation des fibres optiques se note aussi
α
mais s'exprime en dB/km. S'il a une signification
p
hysique très voisine du
α
exposé au §2, ses unités sont différentes puisque :
Pout
=Pin
Log
kmdB 10/ 10
α
o
ù Pin est la puissance lumineuse entrant dans la fibre, et Pout est la puissance lumineuse résiduelle en sortie de
f
ibre après atténuation d'un kilomètre. On passe de l'un à l'autre en faisant la conversion Log10 à Ln.
Remarque : Soit a le logarithme décimal d'un nombre y et b son Ainsi log y = ln y . log e
logarithme népérien. On a a = log y et b = ln y. Par suite 10a = eb,
donc a.log 10 = b.log e. On pose généralement M = log e, c'est donc aussi 1/ln10 (en
choisissant y = 10) : M 0,4342944819 , log y = M.ln y
15- Bilan de liaison
1 / 4 100%

Fiche n°7 : Transmission et pertes en optiques : Expression

La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !