Forced Oscillations and Resonance: Lecture Notes

Telechargé par oted kairouan
2.6 Forced Oscillations and Resonance1
Oscillator equation with external force F(t): basic case assumes Fperiodic,
mx00 +cx0+kx =F0cos ωt
Many real-life situations can be modelled with this equation, for example buildings in an earthquake.
There are three standard cases.
Case 1: Beating
Take c=0 (no damping/friction) and ω6=ω0=qk
m(driving frequency 6=natural frequency).
Already found complementary function xC(t) = c1cos ω0t+c2sin ω0t.
Particular integral: guess xP(t) = acos ωt+bsin ωt. Then
mx00
P+kxP= (maω2+ka)cos ωt+ (mbω2+kb)sin ωt
=F0cos ωta=F0
kmω2=F0
m(ω2
0ω2),b=0
=xP(t) = F0
m(ω2
0ω2)cos ωt
=x(t) = xP(t) + xC(t) = F0
m(ω2
0ω2)cos ωt+c1cos ω0t+c2sin ω0t
Sum of distinct periodic motions.
Larger F0=more motion.
ωclose to ω0=more motion.
Suppose have initial conditions x(0) = 0=x0(0)(periodic force applied to resting spring). Quickly
obtain
x(t) = F0
m(ω2
0ω2)cos ωtcos ω0t=2F0
m(ω2
0ω2)sin ω0ω
2tsin ω0+ω
2t
using a trigonometric identity. If ω0,ωclose in value, then ω0ωω0+ω
Amplitude beats at ω0ω
2rad/s.
x
2 4 6 8 10
t
ω0=20 ω=18
Graphics show x00 +400x=38 cos 18twhere ω0=20. Solution x(t) = sin tsin 19t=A(t)sin 19t.
High frequency vibration sin19twith periodic amplitude A(t) = sin t.
1This is an abstract summary. Study this open-book and pay attention to the numerical examples from lectures...
x
0
Case 2: Resonance
No friction (c=0)where ω=ω0Driving frequency =natural frequency
Obvious guess xP(t) = acos ω0t+bsin ω0talready solves homogeneous ODE, so try
xP(t) = at cos ω0t+bt sin ω0t
Substituting in the ODE and solving for a,bgives
xP(t) = F0
2mω0tsin ω0t
xPis also the solution corresponding to2the initial conditions x(0) = x0(0) = 0.
Sine wave with increasing amplitude A(t) = F0
2mω0t
Spring tears itself apart!
Example Consider the IVP
(4x00 +64x=4 cos ωt
x(0) = x0(0) = 0
The natural frequency is ω0=k/m=4 rad/s. The four graphs show the solutions for four
different driving frequencies: the last case is resonance.
0.005
0
x
2 4 6 8 10
t
ω=20 x(t) = 1
192 sin 8tsin 12t
0.1
0
x
2 4 6 8 10
t
ω=6x(t) = 1
10 sin tsin 5t
0.1
0
x
2 4 6 8 10
t
ω=5x(t) = 2
9sin t
2sin 9t
2
2
4
4
2
0
x
2 4 6 8 10
t
ω=4x(t) = 1
8tsin 4t
2It is also what we obtain by taking limωω0x(t)from the previous slide
2
Summary of undamped-driven motion The initial value problem mx00 +kx =F0cos ωtwith initial
conditions x(0) = 0=x0(0)has solution
x(t) =
2F0/m
ω2
0ω2sin ω0ω
2tsin ω0+ω
2tif ω6=ω0
F0
2mω0tsin ω0tif ω=ω0
where ω0=k/m. As ωω0low frequency beats of increasing amplitude occur.
The clickable animation is generated with the same F0,mthroughout
Case 3: Damped-driven motion (practical resonance)
c>0 mx00 +cx0+kx =F0cos ωt x00 +2px0+ω2
0x=F0
mcos ωt
Transient and steady-periodic solutions Three types:
Damping Condition Complementary Function xC(t)
Overdamping c2>4km ept c1ep2ω2
0t+c2ep2ω2
0t
Critical damping c2=4km (c1+c2t)ept
Underdamping c2<4km eptc1cos ω1t+c2sin ω1twhere ω1=qω2
0p2
p>0=xCtransient: lim
txC(t) = 0
Particular integral: standard guess xP(t) = acos ωt+bsin ωtalways works.
Regardless of initial conditions, x(t) = xP(t)for large t:steady-periodic solution.
Example Find the steady-periodic solution to x00 +3x0+2x=cos ωt.
Try xP(t) = acos ωt+bsin ωt. Substitute in the ODE:
(aω2+3bω+2a)cos ωt+ (bω23aω+2b)sin ωt=cos ωt
=a=ω22
9ω2+ (ω22)2,b=3ω
(ω22)2+9ω2
=xP(t) = 1
(ω22)2+9ω2(ω22)cos ωt+3ωsin ωt=1
(ω22)2+9ω2cos (ωtγ)
where γis the phase angle.
3
x
2 4 6 8 10
t
ω0=50 ω=48
General situation Long-term solution is
xP(t) = F0/m
(ω2
0ω2)2+ (2pω)2(ω2
0ω2)cos ωt+2pωsin ωt
=F0
mq(ω2
0ω2)2+ (2pω)2cos(ωtγ)where tan γ=2pω
ω2
0ω2
Amplitude is a function of frequency ω.
Maximum amplitude when denominator minimal: a little calculus shows this is when
ω=(qω2
02p2if 2p2<ω2
0(requires very light damping c2<2km)
0 if 2p2ω2
0
In the first situation this is known as practical resonance.
The animation shows the steady periodic solution for the equation x00 +16x0+324x=cos ωt, namely
xP(t) = 1
p(182ω2)2+ (16ω)2cos(ωtγ)
for different values of driving frequency ω. Note that the practical resonant frequency (maximum
amplitude) occurs when ω=14.
4
x
2 4 6 8 10
t
ω0=18 qω2
02p2=14 ω=1
Glass smashing!
Model transverse motion of lip of a wine glass by3
1
10 x00 +1
5x0+1, 000, 000x=F0cos ωt
F0cos ωtmodels vibration of the air due to ambient sound.
Unforced motion (F0=0) of the glass is
xC(t) = et(c1cos ω1t+c2sin ω1t)
where
ω1
2π=ω1
2πqω2
0p2=ω1
2πqk
mc2
4m2=503.2920959 Hz
(1 octave above middle C)
0
x
1 2 3
t
Practical resonance occurs when
f=ω
2π=1
2πqω2
02p2=503.2920707 Hz
The animation shows the steady periodic solution for tiny variations of driven frequency fnear the
practical resonant frequency.
A singer must be very loud + accurate to crack the glass...
3Small mass, small damping, high spring constant
5
x
0.1
t
f=Practical Resonant Frequency +5Hz
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans l'interface ou les textes ? Ou savez-vous comment améliorer l'interface utilisateur de StudyLib ? N'hésitez pas à envoyer vos suggestions. C'est très important pour nous!