Evan Chen (Fall 2014) Contents
12.6Orbits...................................... 54
12.7 Corollaries of Sylow’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 54
12.8 Proof of (b) of Sylow’s Theorem assuming (a) . . . . . . . . . . . . . . . . 55
13 October 14, 2014 56
13.1 Proof of the first part of Sylow’s Theorem . . . . . . . . . . . . . . . . . . 56
13.2 Abelian group structure on set of modules . . . . . . . . . . . . . . . . . . 56
13.3DualModule .................................. 56
13.4Doubledual................................... 57
13.5 Real and Complex Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . 57
13.6ObviousTheorems............................... 58
13.7 Inner form induces a map . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
14 October 16, 2014 60
14.1 Artificial Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
14.2OrthogonalSubspace.............................. 60
14.3OrthogonalSystems .............................. 61
14.4Adjointoperators................................ 61
14.5 Spectral theory returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
14.6 Things not mentioned in class that any sensible person should know . . . 64
14.7 Useful definitions from the homework . . . . . . . . . . . . . . . . . . . . 64
15 October 21, 2014 66
15.1Generators ................................... 66
15.2 Basic Properties of Tensor Products . . . . . . . . . . . . . . . . . . . . . 66
15.3 Computing tensor products . . . . . . . . . . . . . . . . . . . . . . . . . . 67
15.4Complexification ................................ 67
16 October 23, 2014 69
16.1 Tensor products gain module structure . . . . . . . . . . . . . . . . . . . . 69
16.2UniversalProperty............................... 69
16.3 Tensor products of vector spaces . . . . . . . . . . . . . . . . . . . . . . . 70
16.4Moretensorstuff................................ 71
16.5Q&A...................................... 72
17 October 28, 2014 73
17.1MidtermSolutions............................... 73
17.1.1Problem1................................ 73
17.1.2Problem2................................ 74
17.1.3Problem3................................ 75
17.2 The space Λn
sub(V)............................... 76
17.3 The space Λn
quot(V) .............................. 77
17.4TheWedgeProduct .............................. 78
17.5 Constructing the Isomorphism . . . . . . . . . . . . . . . . . . . . . . . . 78
17.6Whydowecare?................................ 80
18 October 30, 2014 81
18.1Review ..................................... 81
18.2 Completing the proof that Λn
sub(V)=Λn
quot(V) ............... 82
18.3WedgingWedges................................ 83
3