nanopdf.com la-relation-fondamentale-de-la-dynamique-translation

Telechargé par Ameur Ibrahmi
Collège Sadiki
Relation fondamentale de la dynamique
Série physique(2)
1
http://cherchari.org/
Exercice n° : 1
Les parties (A) et (B) sont indépendantes. On donne g = 10 m.s-2.
A - Dans cette partie les frottements sont supposés négligeables.
A l’origine des dates, un solide S1 supposé
ponctuel, de masse m1 = 2 Kg est lâché sans
vitesse initiale en un point A d’un plan incliné
(fig 1) dont la ligne de plus grande pente fait un
angle =30° avec l’horizontale . Le solide (S1)
glisse sans frottement et arrive au point B, à la
date tB, ayant la vitesse VB.
a- Représenter les forces exercées sur le
solide (S1).
b- Établir l’expression de son accélération a,
déduire la nature de son mouvement. Calculer
la valeur de a.
2) a- Calculer la valeur de la vitesse VB
sachant que la distance AB = 2,5 m.
b- Calculer la durée tB du trajet AB.
B - Dans cette partie les frottements ne sont plus négligeables.
Dans cette partie on relie le solide (S1) à une cage métallique (C ) de masse m2 = 300 g par un fil
inextensible, de masse négligeable, qui passe sur la gorge d’une poulie (P) à axe fixe, dont on néglige
la masse. Au plafond de la cage est fixé un ressort vertical à spires non jointives, de masse
négligeable, de longueur à vide l0=25 cm et de raideur K=50 N.m-1,à l’autre extrémité du ressort est
fixé un solide (S) de masse m=200g. A l’origine des dates (t=0), (S1) part de B vers A sans vitesse
initiale. Au cours de son mouvement
(S1) est soumis à une force de
frottement f supposée constante
égale à 0,5 N, parallèle à la ligne de
plus grande pente du plan incliné et
de sens opposé au mouvement.(fig
2)
1-
a- Déterminer le sens de
mouvement du système.
b- En appliquant la deuxième loi de
Newton ( R.F.D) au système,
établir l’expression de son
accélération a et déduire la nature
du mouvement.
c- calculer a.
d- Déterminer la longueur du ressort.
2- A l’instant de date tC = 1 s, le solide (S1) arrive en C à la vitesse VC. Calculer VC.
3- Au passage du solide (S1) par le point C, le fil est coupé.
a- Donner l’expression de la nouvelle accélération a1 du solide (S1) après la coupure du fil, déduire la
nature de son mouvement.
b- Montrer que le mouvement de la cage après la coupure du fil comporte deux phases.
c- Calculer la longueur du ressort lors de la deuxième phase.
Exercice n° : 2
Un solide (S) supposé ponctuel de masse m = 400 g peut coulisser sans frottement sur une tige (T)
rigide, horizontale. (S) est attaché à l’une des extrémités d’un ressort (R) de masse négligeable, de
longueur à vide l0 de constante de raideur K= 25 N.m-1 enfilé sur la tige, l’autre extrémité est fixé à une
tige verticale solidaire de l’arbre d’un moteur tournant à une vitesse angulaire constante ’ = 30 tours
par minute. Le solide (S) décrit au cours de son mouvement un cercle de rayon l = 25 cm. (fig 3)
S1
B
x’
x
fig 1
fig 2
C
(S1)
x’
x
(C)
y’
y
S
Collège Sadiki
Relation fondamentale de la dynamique
Série physique(2)
2
http://cherchari.org/
1-Calculer pour ce mouvement :
a-La vitesse angulaire ’ en rad.s-1. Déduire l’accélération angulaire ’’.
b-La période T et la fréquence N.
c-L’accélération tangentielle aT et l’accélération normale aN. Déduire l’accélération linéaire a. On
prendra 2=10.
d-Représenter l’allure de la trajectoire du solide (S) sur
laquelle on indique une position de (S) et on représente
le vecteur accélération ainsi que le vecteur vitesse.
Echelle : 1m.s-2 1cm et 1m.s-1 2cm
2-a- Représenter les forces exercées sur le solide (S).
b-En appliquant la relation fondamentale de la
dynamique au solide (S), déterminer la longueur à vide
du ressort l0.
Exercice 3
Un train est formé par une locomotive de masse m2 et
un wagon de masse m1 = 104 Kg (m2 = 2m1). Le wagon
est attaché à la locomotive à l’aide d’un ressort à spires
non jointives de masse négligeable et de constante de
raideur K = 105 N.m-1 .La locomotive et le wagon
chacun est soumis à une force de frottement f
supposée constante de valeur égale à 15.103 N. La
locomotive développe une force motrice supposée constante F qui sert à mettre le train en
mouvement. A l’origine des dates le train prend départ du point A sans vitesse initiale et parcourt le
trajet horizontal AB = 200 m en 10 s et arrive en B à la vitesse VB.
a- Etablir l’expression de l’accélération a de mouvement du train. Endéduire la nature de son
mouvement.
Calculer a. En déduire la valeur de VB.
Calculer la valeur de la force motrice F.
Déterminer l’allongement du ressort.
Au point B le train aborde avec la vitesse constante VB un plan incliné dont la ligne de plus grande
pente fait un angle = 30° avec l’horizontale et la locomotive développe au cours de cette montée une
force motrice F’.
Calculer la valeur de la force motrice F’.
Calculer l’allongement du ressort.
Au point C le ressort est cassé, Montrer que le mouvement ultérieur du wagon comporte deux phases.
Déterminer la distance parcourue par le wagon avant de rebrousser chemin.
A
B
C
(T)
Moteur
fig 3
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !