leçon 5e angles parallélisme

Telechargé par Aurore Benneveau
Angles et parallélisme – Leçon 1
1) Dans un triangle
On peut construire un triangle si:
Sa plus grande longueur est inférieure à la somme des
deux autres: AC < AB + BC (inégalité triangulaire)
La hauteur d'un triangle est une droite qui passe par un sommet de ce triangle et qui est
perpendiculaire au côté opposé à ce sommet
2) Droites et segments
La médiatrice d'un segment coupe ce segment en son milieu, en formant un angle droit.
Tous les points appartenant à la médiatrice sont à égale distance des extrémités du segment
Si deux droites sont perpendiculaires à une même droite alors elles sont parallèles entre elles.
Trace deux droites parallèles grâce à cette dernière propriété.
3) Angles alternes-internes
Les angles alternes-internes sont les angles formés à
l'intersection de deux droites (d) et (d') et d'une sécante
Ils sont situés de part et d'autre de la sécante entre les
deux droites (d) et (d')
4) Angles correspondants
AB
(d)
(d')
C
(d)
(d')
Mesurer sur une figure n'est pas une information fiable! On ne peut pas l'utiliser pour démontrer ou prouver
Pour démontrer (prouver ou justifier) on utilise trois étapes :
On sait que…. On donne les informations qu'on connaît qui nous permettent d'utiliser la propriété
Or …. La propriété ou la définition (qu'on a appris par cœur)
Donc …. La conclusion (réponse à la question)
Souvent on a besoin de répéter ces étapes plusieurs fois pour arriver à la conclusion finale et ainsi
répondre à la question Il faudra alors découper le problème en plusieurs sous problèmes.
J'apprends à démontrer : exercice corri
Dans cet exemple ce qui est écrit avec cette police permet d'expliquer la méthode.
Pour démontrer que des droites sont parallèles, il existe plusieurs propriétés. Par exemple :
si deux droites sont perpendiculaires à une même droite alors elles sont parallèles
entre elles
si les angles alternes-internes formés par deux droites et une sécante sont égaux
alors les droites sont parallèles
si les angles correspondants formés par deux droites et une sécante sont égaux
alors les droites sont parallèles
Ici on remarque que les droites (AC) et (DB) sont coupées par une sécante, on va donc utiliser la deuxième ou la troisième propriété. On ne
connait pas la mesure des angles alternes-internes ni celle des angles correspondants mais on a plusieurs mesures d'angle qui vont nous
permettre de les déterminer. On décompose donc le problème en plusieurs sous problèmes. Quels angles pouvons-nous calculer ?
1) Calcul de l'angle
̂
CAB
On sait que
̂
ABC=90 °et
̂
BCA=55°or la somme des angles dans un triangle est égale à 180° donc
̂
BCA+
̂
CAB+
̂
ABC=55+
̂
CAB+90=180 °donc
̂
CAB=180(55+90)=180145=35°
Pense à noter sur ta figure les informations que tu as déjà démontré
2) Calcul de l'angle
̂
ABD
On ne peut pas le calculer simplement : on décompose donc le problème en plusieurs sous problèmes. Quels angles pouvons-nous
calculer ? On remarque qu'on a deux triangles isocèles, les angles à la base sont donc de même mesure...
a) Calcul des angles du triangle BDE :
On sait que le triangle BDE est isocèle en B or dans un triangle isocèle les angles à la base sont de même
mesure, donc
̂
BDE
=
̂
. De plus, (évite de répéter on sait que... + l'information qu'on vient de démontrer) dans un
triangle la somme des angles est égale à 180°, donc
̂
BDE
+
̂
BED
+
̂
DBE
=
180
°
̂
BDE
+
̂
BED
=
180
40
=
140
ainsi
̂
BDE
=
̂
BED
=
140
÷
2
=
70
°
b) calcul de l'angle
̂
ADB
On sait que les points A, D et E sont alignés, ils forment donc un angle plat:
̂
ADE
=
180
et
̂
ADB
+
̂
BDE
=
̂
ADE
=
180 donc
̂
ADB
=
180
̂
BDE
=
180
70
=
110 °
c) calcul de l'angle
̂
ABD
On sait que le triangle ABD est isocèle en D or dans un triangle isocèle les angles à la base sont de même
mesure, donc
̂
ABD=
̂
DAB . De plus, dans un triangle la somme des angles est égale à 180°, donc
̂
ABD
+
̂
DAB
+
̂
ADB
=
180 °
̂
ABD
+
̂
DAB
=
180
110
=
70 ainsi
̂
ABD
=
70
÷
2
=
35 °.
Finalement : (démonstration finale)
On a montré que
̂
ABD=
̂
CAB=35°
Or si les angles alternes-internes formés par deux droites et une sécante sont égaux alors les droites sont
parallèles.
Donc (AC) et (CB) sont parallèles.
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !