dq Transformations
= 0
 
 
 
  
  
= 0
 
 

=
 
 
 
 

= angle between dq and αβ reference frames
abc
αβ
dq
dq
αβ
abc
A space vector
and its time rate of change
are attached to an αβ coordinate system
rotating at the speed 
. The transformation to a dq coordinate system rotating
at the speed 
 is performed using the rotating matrix where .
Specifically, in terms of Space vectors and Rotating matrix,
 
 
the transformation of variables takes the form
 or the reverse

The time rate of change of the initial space vector
is

=





+ 
so that, after cancelling , the time derivative in the k frame becomes

+ (
Note that



 and

  
  
 
 
A matter of scale in 32 and 23 phase transformations:
  
  
or
 
Pseudo-inverse conversion:
  where
and
=
Quadratic form conversion:

where
Magnitude conversion:
 where
Common conventions:
a
b
c
d
2/3

1
/3
1

2/3
3/2
1
2/3
3
1

3/2
1/
a : Equal magnitude of 2- and 3-phase balanced sinusoidal signals
b : Equal 2- and 3-phase power (power invariant)
c : 2-phase amplitude equals 3/2 3-phase amplitude
d : 2-phase amplitude equals rms of 3-phase signal
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !