Leçon 1 : Activités numériques I Cour
1
1. Ensembles de nombres
: L'ensemble des entiers naturels est formé de tous les nombres entiers positifs
ou nuls. Il contient les nombres : 0 ; 1 ; 2 ; 3 ; 4 ; ...
: L'ensemble des entiers relatifs est formé de tous les nombres entiers naturels
et de leurs opposés : -4 ; -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 ; 4 ;
: L'ensemble des nombres décimaux contient tous les nombres pouvant s'écrire
sous la forme
 , avec n un entier naturel et a un entier relatif.
Exemple : 5,72 est un nombre décimal car on peut l'écrire sous la forme d'une
fraction décimale : 5,72=
.
: L'ensemble des nombres rationnels contient tous les nombres pouvant s'écrire
sous la forme
, où a et b sont deux entiers relatifs (avec b≠0).
Tout nombre rationnel admet une écriture décimale qui comporte une période.
Exemples :
=1,666666... ; 
=4,272727... ;
: L'ensemble des nombres réels contient tous les nombres rationnels mais aussi
les nombres irrationnels. Les nombres irrationnels sont les nombres qui ne peuvent
pas s'écrire sous forme de fractions.
L'écriture cimale d'un nombre irrationnel est un nombre à virgule avec une infinité
de chiffres après la virgule et qui ne comporte pas de période.
Exemples : 1,41421356237.... ; 3,14159265359....
Résumé
Leçon 1 : Activités numériques I Cour
2
2. Division euclidienne
Soient a et b deux nombres entiers, avec b 0.
Effectuer la division euclidienne de a par b,
c'est trouver deux nombres entiers q et r tels
que a = b × q + r avec r < b
Exemples :
47 = 5 × 9 + 2
6894 = 23 × 299 + 17
3. Multiples et diviseurs
On dit que a est divisible par b si le reste de la division euclidienne de a par b est nul.
Cela revient à dire qu'il existe un entier naturel q tel que a=b×q.
Les expressions suivantes sont synonymes :
a est divisible par b
a est un multiple de b
b est un diviseur de a
b divise a
4. Critères de divisibilité
Un nombre est divisible par 2 si son chiffre des unités est 0 ; 2 ; 4 ; 6 ou 8.
(On dit aussi quil est pair)
Un nombre est divisible par 3 si la somme de ses chiffres est divisible par 3
Un nombre est divisible par 4 si le nombre formé par ses deux derniers
chiffres est divisible par 4
Un nombre est divisible par 5 si son chiffre des unités est 0 ou 5
Un nombre est divisible par 6 sil est divisible par 2 et 3
Un nombre est divisible par 8 si le nombre formé par ses 3 derniers chiffres
est divisible par 8
Un nombre est divisible par 9 si la somme de ses chiffres est divisible par 9
Un nombre est divisible par 10 si son chiffre des unités est 0
Un nombre est divisible par 12 sil est divisible par 3 et 4
Un nombre est divisible par 15 sil est divisible par 3 et 5
Un nombre est divisible par 25 si les deux derniers chiffres sont : 00 ; 25 ;
50 ; 75
Leçon 1 : Activités numériques I Cour
3
5. Nombres premiers
On dit qu'un nombre entier naturel est premier s'il possède exactement deux
diviseurs : 1 et lui-même.
Exemple :
2 ; 3 ; 5 sont des nombres premiers ;
0 n'est pas un nombre premier car il
est divisible par tous les entiers supérieurs
ou égal à 1.
1 n'est pas un nombre premier car il
n'admet qu'un seul diviseur (lui-même).
Le plus petit nombre premier est 2,
c'est le seul nombre premier pair
6. Décomposition en produit de facteurs premiers
Tout nombre entier surieur ou égal à 2 se décompose de manre unique en un
produit de facteurs premiers.
Exemples :
24 = 2 × 2 × 2 × 3 = 23 × 3
98 = 2 × 7 × 7 = 2 × 72
23 = 23 (un seul facteur car 23 est premier !)
10 = 2 × 5
84 = 2 × 2 × 3 × 7 = 22 × 3 × 7
Leçon 1 : Activités numériques I Cour
4
7. PGCD
Le PGCD de deux entiers naturels non nuls a et b est le plus grand diviseur commun
à a et à b, c'est à dire le plus grand entier naturel qui divise à la fois a et b.
Cest égal au produit de tous les facteurs premiers communs à ces nombres a et b,
chacun deux nest pris quune seule fois, avec son exposant le plus petit.
Exemples :
45 = 3 × 3 × 5 = 32 × 51
150 = 2 × 3 × 5 × 5 = 21 × 31 × 52
PGCD (45 ; 150) = 31 × 51 = 15
8. PPCM
Le PPCM de deux entiers naturels non nuls a et b est leur plus petit multiple commun
non nul.
Cest égal au produit de tous les facteurs premiers communs et non communs,
avec son exposant le plus petit
Exemple :
72 = 2 × 2 × 2 × 3 × 3 = 23 × 32
132 = 2 × 2 × 3 × 11 = 22 × 31 × 111
PPCM (72 ; 132) = 23 × 32 × 111
9. Nombres premiers entre eux
Deux nombres entiers a et b sont premiers entre eux si leur seul diviseur commun
est 1.
Autrement dit, a et b sont premiers entre eux si et seulement si PGCD (a ; b) = 1.
Exemple :
Les diviseurs de 15 sont : 1 ; 3 ; 5 ; 15.
Les diviseurs de 14 sont : 1 ; 2 ; 7 ; 14.
1 est l'unique diviseur commun à 14 et 15 donc 14 et 15 sont premiers entre eux.
10. Fractions irréductibles
Une fraction est irréductible lorsque le numérateur et le dénominateur sont premiers
entre eux. Elle est alors simplifiée au maximum.
Leçon 1 : Activités numériques I Cour
5
Soient a et b deux nombres entiers tels que a 0 et b 0. Pour rendre irréductible
la fraction
, il faut donc diviser le nurateur et le dénominateur par le PGCD
de a et de b
Exemple :
PGCD (36 ; 126) = 18

 
  
11. Écriture scientifique
Un nombre positif est écrit en notation scientifique lorsqu’il est écrit sous la forme
suivante : a x 10m.
Avec :
a est un nombre décimal tel que 1 a < 10.
m est un nombre entier relatif.
Exercice :
On sait qu'un nombre peut s'écrire de différentes façons avec une puissance de 10.
596 000 = 596 × 103
596 000 = 59,6 × 104
596 000 = 5,96 × 105
Parmi ces écritures, celle qu'on appelle scientifique est celle qui ne comporte qu'un
seul chiffre non nul avant la virgule.
596 000 = 5,96 × 105
0,000 478 = 4,78 × 10-4
459,123 × 102 = 4,591 23 × 104
12. Valeur approchée
Valeur approchée à l'unité (1 près)
- La valeur approchée à l'unité par défaut d'un nombre décimal est le nombre cimal
n'ayant pas de virgule (nombre entier immédiatement plus petit que notre nombre).
- La valeur approchée à l'unité par excès d'un nombre décimal est le nombre sans
virgule immédiatement supérieur à ce nombre décimal.
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !