!
"#$%&#!'%!()%*$!'+,-./0$1!2%&#*34%1! !
5"657! 7899:7897! ;<,26!<)=(! !
!
! ! 9!
Résumé&du&cours&d’Analyse&Numérique&
1) Convergence+
:!Linéaire>!)-!?.?-1!/.!&@&1!4%.-A3A#!'1!B*#(3$3)-!C!(D.4%1!3A#.A3)-E! !
:!Quadratique>!)-!?.?-1!/1!')%F/1!'1!B*#(3$3)-!C!(D.4%1!3A#.A3)-E!
:-Cubique>!)-!?.?-1!/1!A*3B/1!'1!B*#(3$3)-!C!(D.4%1!3A#.A3)-E!
:!1A(E!
2) Résolution+d’une+équation+f(x)=0+
.G H$A3&1*!?*.BD34%1&1-A!/.!*.(3-1E!I*.(1*!/1!?*.BD1!'1!/.!J)-(A3)-!1A!K))&1*!$%*!
/1$!*.(3-1$E!
FG Méthode&de&la&dichotomie>!L$%3A1!'+3-A1*M.//1$!1-(.'*.-A!/.!*.(3-1N!
3G
€
[an,bn](connu)=> w=(an+bn)
2
€
f(an). f(w)<0⇒[an+1,bn+1]=[an,w]
f(an). f(w)>0⇒[an+1,bn+1]=[w,bn]
f(an). f(w)=0⇒w=racine
!
3MG ,M.-A.?1$!>!:!6)-M1*?1-(1!(1*A.3-1!M1*$!/.!*.(3-1!O$3!1//1!1$A!%-34%1!$%*!
/+3-A1*M.//1GP!$3!J!1$A!()-A3-%1E!
!!!:!Q)%*!%-1!B*#(3$3)-!1P!3/!J.%A!J.3*1!-!3A#*.A3)-!.M1(!
!
O(.*!/+3-A1*M.//1!.B*R$!-!3A#*.A3)-$!1$A!'1!/)-?%1%*!
GE!
MG 5-()-M#-31-A$!>!:!6)-M1*?1-(1!/3-#.3*1!O/1-A1GE!
!!!!!!!!!!!:!2#(1$$3A#!'%!(D.-?1&1-A!'1!$3?-1!$%*!/+3-A1*M.//1E!
(G Méthode&de&la&sécante>!L$%3A1!'1!M./1%*$!A1-'.-A!M1*$!*.(3-1N!
3G S3T1*!T8!1A!T9!
33G 6./(%/1*!!
€
xn+2=xn+1−f(xn+1)xn+1−xn
f(xn+1)−f(xn)
!O-U8P9P7PEEEG!
333G ,M.-A.?1$>!:!Q)%*!%-1!J)-(A3)-!C!%-!$1%/!K#*)!B1%!'+D0B)ADR$1$!'1!'#B.*AE!
!!:!6)-M1*?1-?1!*.B3'1!OB)%*!*.(3-1$!$3&B/1$P!.M1(!F)-!(D)3T!'1!T8!
1A!T9G!
3MG 5-()-M#-31-A$>!:!<1-A1!()-M1*?1-(1E!
!!!!!!!!!!:!V.-4%1!'1!B*#(3$3)-!B)%*!%-1!*.(3-1!&%/A3B/1E!
!!!!!!!!!!:!"3$4%1!'+%-1!'3M3$3)-!B.*!K#*)E!!
'G Méthode&du&point&fixe/d’itération>!
3G 6D)3$3*!T9!
33G 6./(%/1*!
!O-U9P7PEEEG!
333G 6D)3$3*!?OTG!A1/!4%1!TU?OTGE!
3MG ,M.-A.?1$>!:!S.(3/1!C!&1AA*1!1-!)1%M*1P!?OTG!4%3!()-M1*?1!*.B3'1&1-A!-+1$A!
$)%M1-A!B.$!A*)B!'3JJ3(3/1!!A*)%M1*E!
MG 5-()-M#-31-A$>!:!;31-!(D)3$3*!?OTGP!A1/!4%1!?OTGUTE!5/!J.%A!B.*J)3$!'3JJ#*1-A$!?OTG!
B)%*!A*)%M1*!'3JJ#*1-A1$!*.(3-1$!'+%-1!&@&1!#4%.A3)-E!
!!!!!!!!!!:!6)-M1*?1-(1!$3!
!!OM#*3J31*!?*.BD34%1&1-A!$3!?*.BD1!
'1!?+OTGWB1-A1!0UTGE!O'3M1*?1-(1!$3!?OTG!B.$!F)--1G!
!!!!!!!!!!:!6)-M1*?1-(1!/1-A1!O$3!?OTG!1$A!M./.F/1GE!