Telechargé par douirathamza0

chapitre 6 machine synchrone

publicité
Cours 6
Terminale GET
Chapitre 6 : machine
synchrone
Introduction
I ⁄ constitution
1.
inducteur ou rotor
2.
induit ou stator
3.
symboles de l’alternateur
4.
exercices
II ⁄ Fém induites
III ⁄ Fonctionnement de l’alternateur
1.
Etude à vide
2. Etude en charge
3.
Modèle équivalent d’une phase
4. Diagramme synchrone
5. Détermination des éléments du modèle équivalent
IV ⁄ Bilan de puissance
1.
puissance recue : Pa
2. puissance utile
3.
Pertes
4. rendement
V ⁄ moteur synchrone triphasé
1.
principe
2. modèle
3.
puissance
M. Dedieu ; Lycée J.Perrin (95)
http://maphysiqueappliquee.free.fr
1
Cours 6
Terminale GET
Introduction
•
La machine synchrone est un convertisseur réversible d’énergie électromagnétique : on
peut l’utiliser en moteur ou en générateur.
Energie
mécanique
Alternateur
Energie électrique
alternative
pertes
Energie électrique
alternative
Moteur
Energie
mécanique
pertes
•
Les alternateurs triphasés sont la source de toute l’énergie électrique que nous
consommons.
Ex : alternateur de voiture : machine tri + pont de diodes avec un excellent rendement (95%)
I ⁄ constitution
On a vu que trois bobines fixes décalées de 120° et alimentées par un système triphasé de
tensions de fréquence f, créent un champ tournant à la vitesse nS.
1.
•
inducteur ou rotor
Il est constitué d’une ou plusieurs bobines alimentés en courant continu (ou d’aimants
permanents) à 2p pôles, soit p paires de pôles.
•
L’inducteur est mobile, il tourne à la fréquence de rotation nS et crée un champ
magnétique tournant à la fréquence de synchronisme.
M. Dedieu ; Lycée J.Perrin (95)
http://maphysiqueappliquee.free.fr
2
Cours 6
•
Terminale GET
Du nombre de pôles dépend la vitesse du rotor et la fréquence du courant produit.
•
tétrapolaire
bipolaire
S
•
S
N
N
N
S
S
S
N
p=1
p=2
N
S
N
p=3
deux types de rotors :
rotor à pôles saillants :
ils sont utilisés pour les faibles vitesses de rotation. (turbines
hydrauliques)
rotor à pôles lisses :
ils sont utilisés pour les vitesses de rotation élevées. (turbines à
vapeurs de centrales nucléaires ou thermiques)
moins de pôles
Forces centrifuges intenses dues à la haute vitesse de rotation imposent une limite du diamètre
du rotor, comme d’autre part les grandes puissances nécessitent un gros rotor, on est obligé de
lui donner une forme très allongée.
2.
•
induit ou stator
Il est constitué de p groupes identiques de 3 bobines logées. Le tout forme un enroulement
triphasé (trois phases).
•
Il est le siège de tensions induites par la rotation du rotor en face de ses enroulements.
•
Ces tensions induites (fém) forment un système triphasé et ont pour fréquence : f = p×nS.
M. Dedieu ; Lycée J.Perrin (95)
http://maphysiqueappliquee.free.fr
3
Cours 6
3.
Terminale GET
symboles de l’alternateur
GS
3~
4.
exercices
1/ un alternateur triphasé tourne à 300tr/min et génère des fém de fréquence 60Hz. Quel est
son nombre de pôles ?
p = f/n=60×60/300 donc p = 12 donc 24 pôles.
2/ un alternateur triphasé génère des fém de fréquence 60Hz et il possède 12 pôles. Quelle est
sa vitesse de rotation ?
n = f/p = 60/6 = 10tr/s donc n=600tr/min
II ⁄ Fém induites
•
on sait que tout circuit électrique soumis à une variation de flux magnétique est le siège
d’une fém induite : e = −
•
dϕ
dt
loi de Lenz.
Donc ici, chaque phase du stator a, à ses bornes, une fém induite de valeur efficace E :
E = K.N.f.φmax
E: valeur efficace de la fém induite d’une phase (en V)
K : coefficient de Kapp (constante qui dépend de la machine.
f : fréquence de la fém induite f = p.nS
φmax : flux maximal à travers une spire de stator.
M. Dedieu ; Lycée J.Perrin (95)
http://maphysiqueappliquee.free.fr
4
Cours 6
Terminale GET
Exercice :
1/ un alternateur triphasé comporte 96 conducteurs au stator et son rotor porte 8 pôles. Le flux
maximal sous un pole est 120mWb. Le coefficient de Kapp de cet alternateur est 2,2.
Quelle est la valeur efficace de la fém de cet alternateur lorsque son rotor tourne à 750 tr/min.
E = K.N.f. φmax avec N = 96/3 = 32 et f=p.n = 4×750/60 = 50Hz
E = 2,2 × 32 × 50 × 120 × 10-3 = 422V
2/ un alternateur triphasé de centrale a les caractéristiques suivantes : coeff de Kapp = 2,05 ;
28 pôles ; φmax = 25mWb ; 8820 conducteurs au stator.
La valeur efficace de la fém par enroulement est 7,53kV.
A quelle vitesse tourne cet alternateur ?
E = K.N.f. φmax et f= n.p
f = E / K.N. φmax =
avec p = 14
7530
= 50Hz
8820
2,05.
.0,025
3
D’où n = f / p = 50 / 14 = 3,57 tr/sec = 214 tr/min
M. Dedieu ; Lycée J.Perrin (95)
http://maphysiqueappliquee.free.fr
5
Cours 6
Terminale GET
III ⁄ Fonctionnement de l’alternateur
1.
•
Etude à vide
on alimente le rotor, en continu, pour créer l’électroaimant.
•
Iex
GS
3~
Uex
•
on couple le stator en étoile
•
à vide, l’induit ne débite aucun courant I = 0
•
le rotor est entraîné à la fréquence de rotation constante n.
•
on relève en fonction de Iex les variations de Epn
0,3 0,4 0,5 0,6 0,7 0,8 0,9
1 1,1 1,2 1,3 1,4 1,5
0 0,1 0,2
11,6 48 84 122,5 152 170 184 193 204 209 216 220 225 231 235 240
Iex
Vo
Caractéristique à vide
250
225
200
175
Vo
150
125
100
75
50
25
0
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1
1,1
1,2
1,3
1,4
Iex
La zone utile de fonctionnement se situe au voisinage du point A, dans le coude de saturation
M. Dedieu ; Lycée J.Perrin (95)
http://maphysiqueappliquee.free.fr
6
1,5
Cours 6
Terminale GET
2. Etude en charge
•
On maintient constant Iex et la vitesse de rotationn.
On relève les variations de la tension simple Vpn en fonction du courant en ligne I pour
une charge résistive.
I (A)
0 0,22 0,3 0,6 0,8 0,98 1,16 1,32 1,46 1,6 1,72 1,84
V (V) 230 230 225 222 217 215 209 202 199 190 182 175
Caractéristique en charge
230
225
220
215
210
205
200
195
190
185
180
175
0
3.
0,25
0,5
0,75
1
1,25
1,5
1,75
2
Modèle équivalent d’une phase
Pour une phase, on a :
i
R
jX
v
E
charge
Rq : c’est le même que pour le transfo.
•
Epn : valeur efficace de la fém à vide (dite synchrone) qui dépend de Iex
•
X = Lω : réactance synchrone (fuite magnétique)
•
R : résistance de l’enroulement
•
I : intensité du courant en ligne
•
V : val efficace de la tension simple aux bornes d’un enroulement
D’où :
V = E – jXI – RI = E – Z.I
M. Dedieu ; Lycée J.Perrin (95)
http://maphysiqueappliquee.free.fr
7
Cours 6
Terminale GET
4. Diagramme synchrone
La relation précédente donne : E = RI + XI + V
Exercice :
Le stator d’un alternateur triphasé, couplé en étoile, fournit des tensions de fréquence f= 50Hz
lorsque le rotor tourne à n = 1000tr/min
1/ calculer le nombre de pôles du rotor
p = f/n = 50×60/1000 = 3 donc 6 pôles
2/ on donne : coef de Kapp 2,2 ; nombre de conducteurs du stator 900 ; flux maximal sous un
pôle 8mWb.
Calculer la fém E d’une phase d’alternateur, supposé constante dans la suite du problème.
E = K.N.f.φmax = 2,2×300×50×0,008=264V
3/ la réactance synchrone est 13Ω
a/ en négligeant R de l’enroulement, dessiner le modèle équivalent d’une phase de
i
l’alternateur.
jX
v
E
b/ Déterminer la tension simple V, lorsque l’alternateur débite 10A dans une charge
résistive.
V + X.I = E
donc
E = √(V² + X²I² )
d’où
V = √(E² - X²I²) = 230 V
c/ En déduire la puissance apparente de l’alternateur pour ce fonctionnement.
S = 3VI = 3.230.10 = 6,9kVA
M. Dedieu ; Lycée J.Perrin (95)
http://maphysiqueappliquee.free.fr
8
Cours 6
Terminale GET
5. Détermination des éléments du modèle équivalent
Détermination de R : on mesure la résistance Rm entre 2 bornes de l’enroulement statorique,
alors selon le couplage :
Etoile : R = Rm / 2
Triamgle : R = (3/2) Rm
Détermination de X : essais en court circuit et à vide donnent Z = E / ICC
2
Donc
X=
 E 
Z ² − R² = 
 − R²
 Icc 
IV ⁄ Bilan de puissance
1.
puissance reçue : Pa
l’alternateur recoit la puissance mécanique, Pméca, fournie pas le système d’entraînement :
Pméca = Tm×Ω
Tm : couple d’entraînement et Ω : vitesse de rotation
Pa = Pméca
2. puissance utile
L’alternateur fournit un système triphasé de tension à une charge triphasée de facteur de
puissance cos ϕ
Pu est la puissance fournie à la charge : Pu =
3UI cos ϕ
3. Pertes
•
Pertes dans le Fer : dépendent de f (donc de n) et V (donc de U)
•
Pertes mécaniques (frottement)
M. Dedieu ; Lycée J.Perrin (95)
http://maphysiqueappliquee.free.fr
9
Cours 6
•
Terminale GET
Pertes Joule Statoriques : PJS =
3
Rm I ² où Rm : résistance mesurée entre 2 phases du
2
stator
PJS étoile = 3RI²
et
PJS triangle = 3RJ²
•
Pertes Joule rotoriques : PJR = Pélec rotor = UexIex
•
Les pertes fer et les pertes méca constituent les pertes constantes PC
4. rendement
conservation de la puissance : Pa = Pu + pertes
η=
η=
Pu
Pa
=
3UI cos ϕ
TmΩ
3UI cosϕ
3UI cos ϕ + pertes
M. Dedieu ; Lycée J.Perrin (95)
http://maphysiqueappliquee.free.fr
10
Cours 6
Terminale GET
V ⁄ moteur synchrone triphasé
1.
principe
Il convertit l’énergie électrique en énergie mécanique
Le stator alimenté par un réseau triphasé de tension, crée un champ tournant à nS = f / p et
entraîne en rotation le rotor.
2. modèle
on utilise le même modèle que pour l’alternateur mais en changeant l’orientation de i, pour
être cette fois ci en convention récepteur.
3.
puissance
Le moteur reçoit de la puissance électrique : Pa = √3UIcosϕ
fournit de la puissance mécanique : Pu = Tu.Ω
Son rendement :
η=
Pu
Tu. Ω
=
Pa
3UI cos ϕ
donc Tu =
M. Dedieu ; Lycée J.Perrin (95)
http://maphysiqueappliquee.free.fr
η 3UI cosϕ
Ω
11
Cours 6
Terminale GET
Docs élève
M. Dedieu ; Lycée J.Perrin (95)
http://maphysiqueappliquee.free.fr
12
Cours 6
Iex
Vo
Terminale GET
0 0,1 0,2
0,3 0,4 0,5 0,6 0,7 0,8 0,9
1 1,1 1,2 1,3 1,4 1,5
11,6 48 84 122,5 152 170 184 193 204 209 216 220 225 231 235 240
Caractéristique à vide
250
225
200
175
Vo
150
125
100
75
50
25
0
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1
1,1
1,2
1,3
1,4
Iex
I (A)
0 0,22 0,3 0,6 0,8 0,98 1,16 1,32 1,46 1,6 1,72 1,84
V (V) 230 230 225 222 217 215 209 202 199 190 182 175
Caractéristique en charge
230
225
220
215
210
205
200
195
190
185
180
175
0
0,25
0,5
M. Dedieu ; Lycée J.Perrin (95)
http://maphysiqueappliquee.free.fr
0,75
1
1,25
1,5
1,75
2
13
1,5
Téléchargement
Random flashcards
amour

4 Cartes mariam kasouh

Fonction exponentielle.

3 Cartes axlb48

relation publique

2 Cartes djouad hanane

Algorithme

3 Cartes trockeur29

Créer des cartes mémoire