aurora 2000

publicité
1/5
FICHE A
AURORA 2000
Programme franco-norvégien d’Actions Intégrées
Dossier de présentation de projet et de demande de soutien financier
Ce dossier doit être rédigé en langue française
Date limite de co-dépôt des dossiers : 15 octobre 1999
Partenaires
Responsable du projet
Fonction
grade
ORGANISME(S)
de
RATTACHEMENT
(les citer tous)
Laboratoire
Nom du directeur
Adresse
N°, rue
Ville, Code postal
Téléphone
Télécopie
Mél.
Autre(s) participant(s)
au projet (nom, fonction)
FRANCE
Alain Colin de Verdière
NORVEGE
Kjetil Lygre
Professeur
Chercheur
[x] Université de Bretagne Occidentale
[] CEA [] INRA [x] IFREMER
[x] CNRS type UMR* n°6523
[] INSERM Unité
n°…………………….…
[]
AUTRE……………………………….….
Laboratoire de Physique des Océans
Nansen Environnement and
Remote Sensing Center
University of Bergen
NERSC (climate institute)
Yves Desaubies
Ola M. Johannessen
Université de Bretagne Occidentale
NERSC
Edvard Griegs vei 3a
UFR Sciences, 6 av. Le Gorgeu
BP 809 - F-29285 Brest cedex
N-5037 Bergen - Solheimsviken
+33 02 98 01 62 20
+47 55 29 72 88
+33 02 98 01 64 68
[email protected]
+47 55 20 00 50
[email protected]
Thierry Huck (chercheur CNRS)
Helge Drange (dir. recherche)
Eduardo da Costa (postdoc UBO)
Frederic van der Meirsch (postdoc IFREMER)
* Indiquer très précisément le type de l’unité
O.-H. Otterå (chercheur)
Projet
Titre : Modélisation et compréhension de la variabilité climatique sur des périodes décennales sur
l'Atlantique Nord, l'Arctique et l'Europe.
Moyens demandés pour 2000
Français vers la Norvège
Norvégiens vers la France
Nombre total de personnes
3
3
Nombre total de voyages
3
3
Durée totale des séjours (en jours) 15
15
Thème : (voir fiche A bis) Sciences de la Terre et de l'Univers (#7)
Autres demandes déposées : [] PAI
[] Autres (à préciser)
Avez-vous déjà bénéficié d'une Action Intégrée sur le même sujet ? [] OUI
[x] NON
Nom du PAI……………………………..
En quelle année ? [_] [_] [_] [_]
Numéro du dossier correspondant [_] [_] [_] [_] [_]
Demande(s) AURORA précédemment déposée(s)
1999
Financement(s) obtenu(s)
2/5
FICHE A bis
AURORA
THEMES DU PROGRAMME
(Important : cocher une case et une seule)
1
[]
Mathématiques, informatique et leurs applications
2
[]
Sciences et technologies de l'information
3
[]
Sciences physiques
4
[]
Sciences pour l'ingénieur
5
[]
Espace, aéronautique
6
[]
Sciences chimiques
7
[x]
Sciences de la terre et de l'univers
8
[]
Energie, transports, environnement, ressources naturelles
9
[]
Biologie, médecine, santé
10
[]
Agronomie, productions animales, végétales et agro-alimentaires
11
[]
Sciences humaines et sociales
12
[]
Sciences juridiques, politiques, économiques et de gestion
3/5
FICHE B
AURORA
DESCRIPTION DU PROJET
Si nécessaire, joindre une annexe à cette fiche (deux pages au plus)
1) Objectifs scientifiques et/ou technologiques :
Modélisation de la circulation océanique dans l'Atlantique Nord et de sa variabilité décennale, à l'aide
de modèles océaniques et atmosphériques de complexité variable.
Analyse de stabilité de la circulation océanique à grande échelle.
Détermination des processus physiques importants dans la variabilité (glace, flux de chaleur ou d'eau
douce à l'interface océan-atmosphère, vents).
2) Programme de travail proposé et calendrier :
Janvier-Mars : Analyse et comparaison des modèles, de leur forçage et de de leur circulation moyenne.
Avril-Juin : Analyse de la variabilité des modèles, analyse de stabilité de l'état moyen.
Juillet-Octobre : Analyse de sensibilité de la variabilité aux types de forçages atmosphérique et à la
paramétrisation des rétroactions (flux de chaleur et d'eau douce, vent). Rationnalisation théorique.
Décembre : Synthèse des résultats numériques et théoriques, rédaction des publications.
3) Intérêt de la collaboration et complémentarité des équipes :
L'approche scientifique du problème découle d'une méthodologie similaire, notamment l'utilisation de
modèles numériques de complexité variable. Un certain nombre d'outils communs ont éte développés
indépendamment et bénéfiecieront de comparaison, par exemple les modèles atmosphériques
simplifiés (en équilibre energétique, EBM) et les paramétrisations des vents "interactifs".
Le laboratoire norvégien apporte une expertise des modèles numériques complexes et "réalistes"
incorporant la glace de mer. Le laboratoire français apporte un mécanisme de variabilité décortiqué
dans des modèles idéalisés, mais qui reste à tester dans une configuration réaliste de l'Atlantique Nord.
La prise en compte de la glace de mer donne lieu à des interactions plus nombreuses entre les
différents éléments du système climatique, dont l'influence sur la stabilité de la circulation océanique
peut-être fondamentale (isolation thermique atmosphère-océan, influence sur la salinité).
4) Avantages de la collaboration pour le laboratoire français :
Le Laboratoire de Physique des Océans a peu d'expérience en modélisation climatique réaliste, la
plupart de travaux sur le thème "variabilité climatique" ayant été effectués dans des configurations trés
idéalisées. Il essaye néanmoins de collaborer avec d'autes laboratoires français (LODYC, CERFACS).
Il s'est impliqué également dans un programme d'observations dans le cadre du projet international
CLIVAR (sections hydrographiques répétées dans le nord de l'Atlantique Nord).
Le laboratoire norvégien présente l'avantage d'une riche expérience en modélisation de ces régions, et
notamment dans la modélisation de la glace de mer dans les modéles océaniques. Celle-ci joue un rôle
significatif dans la variabilité climatique dans l'Atlantique Nord, puisque comme l'océan, la glace
perennante garde la mémoire de l'état climatique d'une année à l'autre. Une collaboration entre ces 2
laboratoires devrait permettre au LPO d'acquérir une expérience dans la prise en compte de la glace de
mer dans les modèles climatiques (plus ou moins simplifiés), ce qui est une condition sine qua non à la
compréhension, voire à la prédiction des changements climatiques sur des périodes saisonnières,
interannuelles, décennales et interdécennales. C'est un enjeu national pour de réelles prévisions
climatiques.
Modélisation et compréhension de la variabilité climatique sur des périodes
décennales sur l'Atlantique Nord, l'Arctique et l'Europe
Nansen Environmental and Remote Sensing Center, University of Bergen, Bergen
Laboratoire de Physique des Océans, Université de Bretagne Occidentale, Brest
Le climat sur l'Atlantique Nord varie fortement sur des périodes interannuelles, phénomène connu
sous le nom d'Oscillation Nord Atlantique (NAO); cette variabilité est néanmoins modulée sur des
périodes quasidécennales et interdécennales principalement. La variation de l'intensité des vents
d'ouest contrôle les échanges de chaleur et d'humidité entre l'atmosphère et l'océan et influence de
manière prédominante le climat sur l'Europe (les températures et précipitations hivernales tout
particulièrement). La compréhension des mécanismes physiques sous-jacents est essentielle pour la
prédiction du climat à court terme, avec ses implications socio-économiques. Par ailleurs, appréhender
la variabilité climatique naturelle permettra de discerner plus facilement la signature du réchauffement
climatique global.
La communauté scientifique a déjà apporté des résultats significatifs issus des modèles couplés
océan-atmosphère les plus complexes, mais des questions clés restent ouvertes vis-à-vis des
mécanismes régulant la variabilité décennale. La collaboration proposée ici a pour objectif de
déterminer les processus physiques majeurs (paramétrisations, forçages, type d'interactions) à l'aide
d'une méthodologie commune particulière : l'utilisation de simulations numériques de niveau de
complexité variable, partant de modèles simples dont les mécanimes de variabilité sont compris, et
ajoutant progressivement des processus physiques plus réalistes, sur la base d'une compréhension des
nouvelles interactions en jeu.
Les objectifs du projet sont l'initiation d'une coopération et d'un échange de connaissances et
d'expertise dans la recherche des mécanismes gouvernant la variabilité décennale des modèles
couplés océan-atmosphère-glace de mer de différent niveaux de complexité.
Les deux institutions (chefs de projets entre parenthèses)
 Nansen Environmental and Remote Sensing Center, University of Bergen, Bergen (Dr. K. Lygre)
 Laboratoire de Physique des Océans, Université de Bretagne Occidentale, Brest (Pr. A. Colin de
Verdière)
partagent une approche commune de la modélisation des processus climatiques par l'utilisation de
systèmes simplifiés. Le groupe français (LPO) a mis en évidence un mode de variabilité propre à la
circulation océanique forcée par les flux de chaleur et d'eau douce à sa surface (dite thermohaline) à
partir de modèles océaniques en configurations idéalisées. Le groupe norvégien (NERSC) possède une
longue expérience de modélisation des hautes latitudes et des processus arctiques, incluant la glace de
mer, à grande échelle. La diversité des compétences des deux institutions assure la complémentarité
d'une approche commune et des conditions optimales à un fructueux échange d'idées et d'expériences
aboutissant à des résultats scientifiques de valeur.
Le LPO contribue déjà à l'effort européen et international des programmes de recherche
CLImate-VARiability dans le cadre du Programme National d'Études de la Dynamique du Climat
(depuis 1999). La recherche du NERSC est menée sous les auspices des programmes européens EC
FWP5 PREDICATE and FWP4 SINTEX, et d'un projet spécifique proposé au Conseil Norvégien de
la Recherche pour 2000. Les objectifs de ce projet s'inscrivent parfaitement dans le cadre de FWP5
Environment and sustainable development. La présente coopération contribuera à des propositions de
recherche commune, soit par des initiatives conjointes ou par des contributions à des consortiums plus
larges, et consolidera mutuellement les deux groupes dans la recherche de financement nationaux.
État des lieux
Les prédictions climatiques saisonnières à interannuelles sur l'Europe sont intimement lièes à
l'Oscillation Nord Atlantique (Sutton et Allen 1997 ; Hurrell 1995) et à ses variations décennales
(Rodwell et al. 1999). Une manifestation de la NAO est la variabilité quasidécennale des températures
dans l'Atlantique nord-ouest (Deser et Blackmon 1993) et la propagation d'anomalies de salinité autour
du tourbillon sub-polaire (Reverdin et al. 1997 ; Belkin et al. 1998). Les anomalies de salinité sont
générées dans l'Arctique, dans la mer du Labrador ou dans la baie de Baffin par la formation excessive
de glace due à des vents de terre froids anormalement forts, suivie d'une fonte dans les eaux chaudes.
Les courants de pente dans la mer du Labrador sont responsables de la génération d'anomalies qui se
propagent vers le nord-est le long de la limite sud du tourbillon subpolaire. Wohlleben et Weaver
(1995) invoquent les interactions océan-atmosphère dans le tourbillon subpolaire et les hautes
pressions du Groenland dans leur explication de la variabilité.
Divers mécanismes de variabilité décennale basés sur l'importance du couplage océan-atmosphère sont
présentés par Rahmstorf (1999). Un des plus récents attribue l'excitation de la variabilité à une
instabilité de type barocline dans la région du courant de bord ouest où les pertes de chaleur par
l'océan sont les plus fortes (Colin de Verdière et Huck 1999). La simplicité de ce mécanisme est que
l'atmosphère y joue un rôle passif, puisque la source de variabilité réside dans l'océan : L'amplitude
des oscillations augmente avec l'intensité de la circulation thermohaline, donc du forçage thermique ou
du mélange vertical de chaleur. La période des oscillations trouvée dans des modèles couplés est assez
variable, 40 ans ou plus pour Delworth et al. (1997) qui impliquent la mer du Groenland. Lygre (1996)
propose comme mécanisme sous-jacent dans ces oscillations un couplage entre la circulation Arctique
et la mer du Groenland.
La stabilité de la circulation thermohaline dans l'Atlantique (et l'océan global) est indissociable de ces
variations décennales (Rahmstorf 1999). Lohmann et Gerdes (1998) ont montré le rôle de la
couverture de glace de mer dans les mécanismes de stabilité à l'aide d'un modèle d'océan et de glace de
mer couplé à un modèle atmosphérique en équilibre énergétique (EBM). L'interruption de la
convection par une anomalie de salinité permet à la glace d'isoler l'océan d'un refroidissement
prolongé, ce qui permet des déplacements considérables de la limite des glaces.
Recherche proposée
Plusieurs expériences numériques seront menées au LPO et à NERSC durant l'anné 2000 : des visites
réciproques et des communications régulières permettront d'harmoniser les configurations des modèles
et les forçages ; les résultats seront discutés mutuellement au cours de l'année afin de définir les
expériences futures à réaliser.
NERSC s'attachera à l'analyse de l'état d'équilibre et de la variabilité dans un modèle de
l'Atlantique et de l'Arctique, comprenant une composante océanique isopycnale, une composante
dynamique et thermodynamique de glace et une composante atmosphèrique de type EBM (Bleck et al.
1992 ; Drange 1996 ; Chierici et al. 1999). Le modèle océan-glace sera d'abord forcé par une
climatologie de qualité, puis l'atmosphère sera adapté aux flux de chaleur et d'humidité requis, tout en
assurant la conservation de masse dans le traitement des flux d'eau douce à la surface.
Le LPO analysera la stabilité et la variabilité de la circulation océanique dans l'Atlantique Nord
à partir des résultats d'un modèle océanique global (coordonnées z). Le forçage sera d'abord des flux
de chaleur et d'eau douce prescrits (à partir de climatologies et de simulations couplées), puis un
couplage avec un modèle atmosphérique de type EBM, avec et sans vents interactifs. On cherchera à
obtenir une variabilité naturelle du modèle océanique en l'absence des termes de relaxation des
températures (et éventuellement salinité) de surface traditionnellement utilisés : l'introduction d'un
bruit aléatoire dans les flux de surface pourrait toutefois s'avérer nécessaire afin de déclencher la
variabilité. Les mécanismes physiques entretenant la variabilité décennale focaliseront notre attention,
afin de déterminer ceux influençant la période et l'évolution des anomalies de température et salinité.
Les méthodes d'analyse de stabilité développées pour les modèles idéalisés précedemment étudiés
seront adaptées et appliquées, principalement pour prendre en compte l'influence de la glace de mer.
Les avantages de l'approche bicéphale menée à NERSC et au LPO apporteront beaucoup aux deux
groupes en terme de compréhension des mécanismes physiques fondamentaux régissant la variabilité
décennale dans l'Atlantique Nord et l'Arctique, et permettront d'éliminer des comportements
spécifiques à une configuration particulière (modèles à niveaux ou à couches, résolution ou domaine,
forçage). Différents niveaux de complexité et de réalisme aideront à identifier les processus et
rétroactions océan-atmosphère nécessaires pour reproduire la variabilité décennale, avec une attention
accrue au rôle de la glace de mer et des anomalies de salinité que de nombreux auteurs ont souligné
recemment.
Références
Belkin, I. M., S. Levitus, J. Antonov, and S. Malmberg, 1998: "Great salinity anomalies" in the North Atlantic.
Prog. Oceanogr., 41, 1-68.
Bleck, R., C. Rooth, D. Hu, and L. T. Smith, 1992: Salinity-driven thermocline transients in a wind- and
thermohaline-forced isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr., 22, 1482-1505.
Chicieri, M., H. Drange, L. G. Anderson, and T. Johannessen, 1999: Inorganic carbon fluxes through the
boundaries of the Greenland Sea basin based on in-situ observations and water transport estimates. J. Mar.
Syst., in press.
Colin de Verdière, A., and T. Huck, 1999: Baroclinic instability: an oceanic wavemaker for interdecadal
variability. J. Phys. Oceanogr., 29, 893-910.
Delworth, T., S. Manabe, and R. J. Stouffer, 1997: Multidecadal climate variability in the Greenland Sea and
surrounding regions: a coupled model simulation. Geophys. Res. Let., 24 , 257-260.
Deser, C., and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter:
1900-1989. J. Clim., 6, 1743-1753.
Drange, H., 1996: A 3-dimensional isopycnic coordinate model of the seasonal cycling of carbon and nitrogen in
the Atlantic ocean. Physics and Chemistry of the Earth, 21, 503-509.
Huck, T., A. Colin de Verdière, and A. J. Weaver, 1999: Interdecadal variability of the thermohaline circulation
in box-ocean models forced by fixed surface fluxes. J. Phys. Oceanogr., 29, 865-892.
Hurrell, J. W., 1995: Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation.
Science, 269, 676-679.
Lohmann, G., and R. Gerdes, 1998: Sea ice effects on the sensitivity of the thermohaline circulation. J. Climate,
11, 2789-2803.
Lygre, K., 1996: A numerical study of the circulation of the North Atlantic and Arctic oceans. Ph.D. thesis
manuscript, Geophysical Institute, University of Bergen / NERSC.
Rahmstorf, S., 1999: Decadal variability of the thermohaline ocean circulation. In: Beyond El Niño: decadal and
interdecadal climate variability, edited by A. Navarra, 329-351, Springer.
Reverdin, G., D. Cayan, and Y. Kushnir, 1997: Decadal variability of hydrography in the upper northern North
Atlantic in 1948-1990. J. Geophys. Res., 102, 8505-8531.
Rodwell, M. J., D. P. Rowell, and C. K. Folland, 1999: Oceanic forcing of the wintertime North Atlantic
Oscillation and European climate. Nature, 398, 320-323.
Sutton, R. T., and M. R. Allen, 1997: Decadal predictability of North Atlantic sea surface temperature and
climate. Nature, 388, 563-567.
Wohlleben, T., and A. J. Weaver, 1995: Interdecadal climate variability in the subpolar North Atlantic. Clim.
Dyn., 11, 459-467.
4/5
FICHE C
AURORA
PRESENTATION DES EQUIPES
Composition(s) des équipes :
F : Laboratoire de Physique des Océans
Alain Colin de Verdière, professeur
Thierry Huck, chercheur CNRS
Eduardo da Costa, chercheur postdoctoral
Fréderic van der Mersch, chercheur postdoctoral
N : G. C. Rieber Climate Institute (NERSC)
Kjetil Lygre, chercheur
Helge Drange, directeur de recherche
O.-H. Otterå, chercheur
Equipements disponibles pour la réalisation du projet :
F:
Stations de travail et PC (local), supercalculateurs (IDRIS)
N:
Stations de travail et PC (local).
Publications significatives en rapport avec le projet (5 au maximum) :
F:
Colin de Verdière, A., and T. Huck, 1999: Baroclinic instability: an oceanic wavemaker for interdecadal
variability. Journal of Physical Oceanography, 29, 893-910.
Huck, T., A. Colin de Verdière, and A. J. Weaver, 1999: Interdecadal variability of the thermohaline circulation
in box-ocean models forced by fixed surface fluxes. Journal of Physical Oceanography, 29, 865-892.
Huck, T., 1997: Modeling the oceanic thermohaline circulation: analysis of its interdecadal variability. Ph.D.
thesis manuscript, Université de Bretagne Occidentale, Brest, France, 250 p.
N:
Lygre, K., 1996: A numerical study of the circulation of the North Atlantic and Arctic oceans. Ph.D. thesis
manuscript, Geophysical Institute, University of Bergen / NERSC.
Drange, H., 1996: A 3-dimensional isopycnic coordinate model of the seasonal cycling of carbon and nitrogen in
the Atlantic ocean. Physics and Chemistry of the Earth, 21, 503-509.
Appuis demandés et/ou déjà obtenus hors PAI AURORA pour ce projet (*) :
F:
Programme National d'Études de la Dynamique du Climat (PNEDC), financé en 1999, demandé pour
2000 (A. Colin de Verdière, E. da Costa, T. Huck)
N:
Conseil Norvégien de la Recherche, demandé pour 2000 (K. Lygre)
(*) Donner toutes précisions utiles sur les appuis demandés et/ou obtenus, y compris les bourses : dates, durées,
sources et montants des financements.
5/5
FICHE D
AURORA
PERSPECTIVES DE LA COOPERATION
Formation par la recherche :
(Ce projet sert-il de support à une formation par la recherche, notamment dans le cas d'une
co-tutelle de thèse ? Le cas échéant, préciser le(s) nom(s) du (des) doctorant(s) ainsi que le(s)
sujet(s) de recherche.)
formation par la recherche (étudiant en DEA à définir, éventuellement thèse)
Résultats attendus du projet :
(Publications, communications, organisation de colloques, formation de jeunes chercheurs,
valorisation industrielle, (dépôt de brevets), économique, socio-culturelle).
- Publications dans la presse spécialisée (Journal of Physical Oceanography, Journal of Climate)
- Communications dans les congrès européens (EGS) et internationaux
- Formation étudiant en DEA (peut-être thèse)
Perspectives européennes :
(Participation existante ou envisagée à un (des) programme(s) communautaire(s) ; avec quel(s)
partenaire(s) ?)
EURO-CLIVAR
Autres perpectives internationales
CLIVAR : CLImate VARiability international program
Propriété intellectuelle :
L'attention des chercheurs est particulièrement attirée sur la nécessité de prendre toutes dispositions
utiles relatives à la protection des droits de propriété intellectuelle et du patrimoine scientifique
français ainsi qu'à d'éventuels transferts de technologie vers d'autres pays.
Signature du responsable
Français du projet
Avis du Directeur du Laboratoire
et/ou du Chef d'Etablissement
Téléchargement