senescence

publicité
Dynamics and plasticity of telomeres :
consequences in cancer and aging Véronique Gire
CRBM-CNRS, Montpellier
[email protected]
Cancer incidence rise exponentially with age
human
incidence
mice
0
1.5
3
60 age Age is the largest simple risk factor 120
Cellular transformation is a multi-step process
I
N
I
T
I
A
T
I
O
N
T
R
A
N
S
F
O
R
M
A
T
I
O
N
UV radiation
chemical carcinogens
viral infection
chronic inflammation
inherited genetic
mutations
ADN
mutations
oncogenes
tumor suppressor genes
DNA Repair
ADN
apoptosis
mutations
telomerase ADN « tumoral »
Hallmarks of cancer
comprise eight biological capabilities acquired during the multistep development of human tumors Hanahan& Weinberg, Cell 2000, 2011
Organisms with renewable tissues had to evolve mechanisms to prevent cancer
One such mechanism is cellular senescence,
which irreversibly arrest the growth of cells at risk of neoplastic transformation
Tumour suppressor mechanism
prevent cancer by acting on mitotic cells that are at risk for neoplastic transformation Oncogenic
damage Gatekeepers genes
Caretakers genes
Apoptosis/Cellular senescence
DNA repair
mutations
Malignant phenotypes
Cellular senescence is caused by potentially oncogenic stimuli
Strong/mitogenic
stress signals
Short/dysfunctional
telomeres
(replicative senescence)
Irreversible cell cycle arrest
Non-telomeric
DNA damage
(ROS)
Chromatininstability
Oncogenes/
oncogenic mutations
Replicative potential
Replicative senescence or Hayflick limit Normal cell
Cancer cell lines immortal
limited growth
potential
Senescence
40
80
Cell divisions √ Human cells could undergo only a limited number of cell divisions
when cultured in vitro
Hayflick & Moorhead Exp Cell Res 1961; 25:585-621
Senescent phenotype of human primary fibroblasts
phase
BrdU
(proliferation marker)
SA-βgal
(senescence biomarker)
Young
Senescents
Morphology remodeling
Cell Cycle arrest
Metabolic changes
Features of cellular senescence
Normal fibroblasts . Morphological changes -cells become larger and flatten out
-cells display increased granularity
-cytoplasms become more vacuole-rich
young
+70-80
doublings
. Biochemical changes -perinuclear activity of SA-β galactosidase -cells are irreversibly arrested in G1 phase
-increased protein levels of senescence markers (p21, p16Ink4a, PML, markers of DNA damage, MMP3, PAI-1 etc..)
. Chromatin changes -associated heterochromatic foci (SAHFs)
-histone H3 lysine 9 trimethylation
-HP1 recruitment senescent
Senescence versus quiescence
Feature Senescence
Growth arrest
Permanent
Transient (mitogen reponsive)
DNA content
2N or 4N
2N
Metabolism
High
Low (reduced ribosomal RNA and
protein synthesis)
Molecular
effectors p16Ink4a, p21Waf1, ARF,
p53 and Rb
p21Waf1, p27Kip1, p107, p130 and
repressive E2Fs
Markers Short or dysfunctional telomeres None
SAβ-gal
p16Ink4a
DNA damage response
SASP (senescence-associated secretory phenotype)
SAHFs (senescence-associated heterochromatic foci)
Quiescence
Sharpless & Sherr Nature Reviews Cancer 2015
Olovnikov’s theory Olovnikov J Theor Biol 1973; 41:181-90
-linked the Hayflick limit to the replication of telomeric DNA -proposed that telomere length determines the number of cell divisions
that a cell can undertake
Telomere have the essential role of protecting chromosome ends
Telomere PNA-FISH of metaphase chromosomes
(telomeres (yellow) and chromosomes (blue)
Telomere function
replication
chromosome capping recombinaison end-to-end fusion
enzymatic degradation
Muller The Collecting Net 1938; 13:181-95
McClintock B. PNAS 1939; 25:405-16
Schematic representation of telomere structure in a T-loop configuration
5-15kb
TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG-3’
AATCCCAATCCCAATCCCAATCCCAATCCCAATCCCAATCCCAATCCC-5’
3’G-rich overhang (~150bp)
telomere proteins T-loop Strand invasion of the 3’ overhang
Electron micrograph of a telomere (Griffith et al., Cell 1999)
-Telomeric DNA consists of tandemly repeated, short nucleotide sequence motifs (TTAGGG in humans)
-Composed of double-stranded TTAGGG repeats (5-15kb) and a 3’ single-stranded G-rich overhang (50-150bp)
-Telomeric repeats are covered by telomere binding proteins
-Telomere is folded back into a telomeric loop (T-loop)
The Nobel Prize in Physiology or Medicine 2009
jointly to
Elizabeth H. Blackburn, Carol W. Greider and Jack W. Szostak
for the discovery of
"how chromosomes are protected
by telomeres and the enzyme telomerase"
The end-replication problem
5’
3’
Complete synthesis
TTAGGG
parental (template) strand
parental (template) strand
5’
3’
AATCCC
3’ Leading strand
5’
3’
5’
Okazaki fragment synthesis
Lagging strand
RNA primers
5’-3’ exonuclease
Ligation of Okasaki fragments Removal of the last RNA primer
5’
3’
TTAGGG
3’
5’
3’G-rich extension
C-strand degradation by a 5’-3’ exonuclease
5’
3’
AATCCC
3’
5’
Incomplete synthesis
Lagging strand
Extreme 5’end is not replicated
Telomerase enzyme solves the end replication problem • Germ cells (along with cancer cells) but not somatic cells have an enzyme, telomerase, which elongates shortened telomere •The telomerase ribonucleoprotein complex contains hTERT (telomerase reverse transcriptase; the protein catalytic subunit) and hTR (the internal RNA template) which acts as a template for synthesizing telomere DNA
• hTR is present in somatic cells
•Telomerase levels are regulated at multiple levels
-transcription, -alternative splicing,
-assembly and folding,
-subcellular localization,
-post-translational modification hsp90
p23
3’
hTERT
hTR
VPARP
dyskerin
Lingner et al, Science 1997; Meyerson et al., Cell 1997; Nakamura et al., Science 1997; Blasco et al, Science 1995; 5’
Biological activity of telomerase
TERT
Six newly added
telomere repeat
Telomerase
Telomere
5’-GGTTAGGGTTAGGGTTAGGGTTAG-3’
3’-CCAATCCCAATC
CAAUCCCAAUC
5’-GGTTAGGGTTAGGGTTAGGGTTAGGGTTAG
GGTTAG
3’-CCAATCCCAATC
CAAUCCCAAUC
hTR 3’
5’
3’
Recruitment of telomerase to 3’ end of DNA hTR bind to 3’ end of telomere repeats
5’
Nucleotides added to 3’ end of telomeric DNA
5’-GGTTAGGGTTAGGGTTAGGGTTAGGGTTAG
GGTTAG-3’
3’-CCAATCCCAATC
CCAATCCCAAUC
RNA primer DNA polymerase
Standard replication machinery extends the complementary DNA strand Measuring the activity of telomerase : Telomeric Repeat Amplification Protocol (TRAP) assay
Principle
The assay involves two steps
Rnase :
1•Cell extracts 2•Step 1 :Elongation by telomerase of a
forward primer added in the extract 3•Step 2 Amplification of the elongated products by PCR with a reverse primer complementary
to the elongated telomeric repeats
-
+ -
+
-
+ -
.
.
.
.
.
.
68bp
62bp
Six-base products ladder
amplified by the telomerase
56bp
50bp
4•Native polyacrylamide gel migration
stained with SYBR-Green I stain
Internal control (36bp)
Telomere erosion controls the proliferative capacity of somatic cells
Germ cells :
10-12
active telomerase
• Telomere length is maintained in germ cells by active telomerase
Telomere length (kb)
Somatic cells :
telomerase negative
+hTERT
active telomerase
immortalisation
senescence
6
•Most somatic cells are telomerase negative
•Somatic cells experience progressive telomere shortening with
proliferative time
•Critically shortened telomere signal cells to enter a permanent
growth arrest known as senescence
•Ectopic expression of hTERT allows to bypass senescence
and become immortal
M1 or
Hayflick limit
Cell divisions
Nakamura et al., Science 1997; 277:955
Bodnar et al, Science 1998; 279:349-52
Role of telomeres in the immortalization of epithelial cells
Short telomeres Fibroblasts
5-20 d
Keratinocytes
ngs
oubli
short telomeres p53 activated
+hTERT
+HPV-E7
other
senescence
senescence immortalisation
pRb/p16
Kiyono et al Nature 1998; 396: 84-8
Telomere independent senescence : « mitotic clock or culture shock ?» Sherr&DePinho Cell 2000; 102:407-10
5-20 doublings
no feeder layers Keratinocytes
Stress
p16INK4a ↑
pRb activated
senescence feeder layers 50-70 doublings
short telomeres p53 activated
senescence Telomere independent senescence can be explained by an inadequate culture environment
Ramirez et al Genes&Dev 2001; 15: 398-403
Telomere length measurements Terminal Restriction Fragments (TRFs) Length Analysis : first methodology
devised to estimate the average telomere length of a cell population
Primary human fibroblasts
Genomic DNA extraction
Genomic DNA digested with restriction enzymes
(HinfI and RsaI)
Kb
23-
DNA fragments resolved by gel electrophoresis
(calibration)
9.4-
Southern blotted and probed with a radioactive labeled
probe to reveal a telomere specific smear
Autoradiography
The median length of the telomere smear estimated by comparison with known size markers
6.6-
4.4-
2.3-
2-
cell divisions
The length of telomere repeats at individual chromosome ends is highly
variable
Quantitative Fluorescence in situ Hybridization (Q-FISH) : allows high
resolution telomere length measurements at specific chromosome ends
Chromosomes metaphase spread
In situ hybridization with fluorescently-labeled
peptide nucleic acid (PNA) probes that specifically hybridize to denatured telomere DNA Measurements of fluorescent signal relative to standards
(also use to detect ends without detectable repeats and chromosome fusion events) Telomere length measurements Single Telomere Length Analysis (STELA): a PCR approach that determines
telomere length distribution from single DNA molecules
telomere-
specific primer
XpYpE2
G-rich 3’overhang
3’
TTAGGG
telomere repeats variant
5’
3’
subtelomeric sequence
5’
XpYpB2
telorette
teltail
ligate
First Step :
consists of annealing a linker or « telorette » comprising seven bases of TTAGGG homology followed by a 20nucleotide non-complementary tail to the G-rich 3’ overhang of the telomere.
Second Step : the telorette is ligated to the 5’ end of the complementary C-rich strand of the chromosome,
which effectively tags the end of the telomere with the non-complementary telorette tail. PCR can then be
performed using a primer (‘teltail’) that is identical to this tail, together with a chromosome-specific upstream
primer
Baird et al, Nat. Genet. 2003
XpYp telomere-length distributions of young and immortal HF-E6/E7
using STELA
MW
HF-E6/E7
young
+hTERT
24.6kb
14.6kb
-around 4-20 telomeric molecules are amplified in each PCR reaction
9.6kb
6.6kb
-each DNA sample is subjected to multiple separate telomere PCR reactions and different reactions are loaded in separate lanes (here 3 reactions are shown)
3.6kb
-the fragments are resolved with agarose gel electrophoresis and detected by Southern hybridization with a telomere specific probe -each visible band is a single telomere 1.6kb
Collaboration with Duncan Baird (Cardiff)
XpYp telomere-length distributions of young and immortal HF-E6/E7
0,20
0,05
2
0
2
0
3.6kb
4
Telomere length (kb)
4
6
8
10
0,00
20
6.6kb
0,10
12
9.6kb
0,15
14
14.6kb
16
Frequency (%)
24.6kb
HF-E6/E7 young
n=158
s=0.621
l=13.21
18
young
+hTERT
MW
HF-E6/E7
Frequency (%)
HF-E6/E7+hT
1.6kb
0,20
0,15
n=166
s=0.612
l=13.688
0,10
0,05
6
8
10
12
14
16
18
20
0,00
Telomere length (kb)
Mean telomere length
SD (variance)
Median
5.73
3.12
5.05
7.13 2.56
7.16
-telomere length distribution become tighter and more homogenous with telomerase expression
Role of the p53/p21 pathway in replicative senescence
Dysfunctional Telomeres
HFF
PD:!
p
Mdm2
p53
p
activated
28!
73!
79!
85!
<1
p-pRb!
pRb!
p16Ink4a
p53!
cycA!
p21WAF1 p16!
CycE
Cdk2
Cdk4/6
CycDs
p21!
total!
pRb
E2F
p
pRb
%BrdU :!
%SA-βGal :!
p
E2F
G1/S transition onset and maintenance of
irreversible G1 cell cycle arrest
86
37
11
0
29
61
89
!
!
Schematic diagram of cell cycle arrest in senescent cells
Dysfunctional Telomeres
DNA damage
Johmura et al Mol Cell 2014
Krenning et al Mol Cell 2014
p
p
p53
p
p16Ink4a
activated
CycE
p
activated
p21WAF1 Cdk2
p53
p21WAF1 Cdk4/6
CycDs
pRb
APC/Ccdh1
activated
pRb
Diploid senescent cells (G1 phase)
G2 cells
Tetraploid senescent cells
(G1 phase)
Mitosis skip
Hypothèses de détection d’un défaut télomérique
noyau « jeune »
Trois modes possibles de détection d’un défaut télomérique
ADN endommagé
Excès de protéines
télomériques « libres »
Transition structurale
d’un télomère
Too short telomeres activate the DNA damage response
γ-H2AX Too short telomeres
p
young
senescents
p
p
53BP1
p
BRCA1
p
p
p53
senescents
p21WAF1 D’Adda Di Fagagna et al., Nature 2003 Gire et al., EMBO J 2004 Herbig et al., Mol Cell 2004
p
CHK1
CHK2
young
p
ATRIP
ATR
ATM
53BP1/ADN
γ-H2AX /ADN
γ-H2AX Cell cycle arrest
senescence
Mdm2 Roles of the p53 and p16/Rb pathways in the senescence response
eroded telomeres
proteotoxic stress (protein aggregation)
DNA damage
reactive metabolites (ROS, high glucose )
oncogenic mutations
Too short telomeres « DNA breaks »
gene expression changes &
chromatin remodeling p16/pRb
p53/p21
Activation of cell-cycle checkpoints
Premature Senescence
Stasis (OIS, STIS)
Replicative Senescence
Similar senescent phenotype
Serrano et al., Cell 2001
Molecular regulation of oncogene-induced senescence
oncogenic Ras
ROS signals
DNA replication stress
DNA damage
p16/RB
Chromatin reorganization
(SAHF)
ARF
p53
Senescence growth arrest
(irreversible)
Mdm2 Narita et al., Cell 2003
Mallette et al., Genes&Dev 2007
Di Micco et al., Nature 2006
Chromatin remodeling in senescent cells senescence
replicative quiescence
DAPI
stasis
Apparition foyers de chromatine condensée dans les fibroblastes sénescents
Proliferative normal human cells exhibit a diffuse nuclear DNA staining
Senescent cells show bright punctuate DNA foci of compact chromatin Narita et al., Cell 2003
Molecular characteristics of SAHF
SAHF contain markers of heterochromatin, including hypoacetylated histones,
histone H3 methylated on lysine 9 (H3K9Me), and bound Heterochromatin Protein 1 (HP1) proteins DNA, blue
HIRA chaperone protein, red
PML bodies, Green
Senescence-associated foci lack sites of active transcription Narita et al., Cell 2003
Zhang et al., Dev Cell2005
A Model for formation of SAHF in senescent human cells
During proliferation, proliferation-promoting genes, including
those regulated by E2F, are transcribed and their histones are
acetylated (Ac). In response to senescence stimuli, the HIRA/ASF1a histone
chaperones cooperates with the p16INK4a/pRB pathway to drive
chromosome condensation. After chromosome condensation, HP1
proteins and histone variant macroH2A are incorporated into
SAHF. Recruitment of HP1γ to SAHF depends on HP1γ
phosphorylation. Repressive heterochromatin at loci containing E2F target genes
leading to their expressionsilencing
Transcriptional repression and the formation of SAHF require
the Retinoblastoma (Rb) protein. Devenir des télomères et capacités réplicatives in vivo

Corrélations taille des télomères, âge et capacité réplicative
les cellules somatiques issus de donneurs jeunes possèdent des télomères plus longs que celles issues de donneurs âgés (Allsopp et al., PNAS 1992;89:10114-8)

Maladies génétiques du vieillissement
-les enfants nés avec le syndrome de la progéria de Hutchinson-Gilford ont des télomères
plus courts que ceux d’enfants sains du même âge
-les cellules issues de patients atteints du syndrome de Werner et d’ataxie télangiectasie
perdent leurs télomères à un rythme plus élevé que les cellules témoins
Corrélations stress réplicatif, taille des télomères et cancer
les télomères de cellules hématopoïétiques de patients ayant subi une transplantation de la moelle osseuse sont plus courts que ceux des cellules donneurs
Modèle souris transgénique pour étudier le rôle des télomères dans le
vieillissement
 Souris Terc-/-, G1-G3, télomères longs, pas de pathologie visible
 Souris Terc-/-, G6, télomères courts provoquent des manifestations de
vieillissement prématuré :
-animaux mâles stériles
-reduction de la prolifération dans les organes à index mitotique élevé (cellules germinales, hematopoiëtiques et épidermiques)
-vieillissement prématuré (alopécie, cicatrisation laborieuse des lésions cutanées et poils grisonnants)
Blasco et al, Cell 1997
Senescent cells accumulate in vivo
SA-βGal staining of skin samples
√ with increasing age
-skin
young
-retina
-liver, spleen etc…
√ at sites of degenerative age-related pathology old
-venous ulcers
-atherosclerotic plaques
-benign prostatic hyperplasia
- pre-neoplastic lesions
Dimri et al., PNAS 1995; 92:9363-7
Senescent cells do not simply stop dividing
irreversible growth arrest
resistance to apoptosis
altered function/gene expression
√ Senescent cells remain viable and metabolic active. √ They secrete biologically active molecules that can change tissue
structure and function. This phenotype is referred to as the senescenceassociated secretory phenotype (SASP)
Autocrine and paracrine activities of selected SASP factors Factor Amphiregulin
Granulocyte-macrophage colony stimulating factor
Growth-related oncogenes (CXC chemokines)
Insulin-like Growth factor binding protein-7
Interleukin-6
Interleukin-8
Matrix metalloproteinases
Monocyte chemoattractant proteins
(CCL chemokines) Plasminogen activator inhibitor-1
Vascular endothelial growth factor
Symbol Major activities
AREG GM-CSF GROs, CXCLs
IGFBP-7 IL-6
IL-8
MMPs MCPs, CCLs
Cell proliferation
Hematopoietic stem cell, differentiation;
PAI-1
VEGF
Wound healing; autocrine growth arrest
Endothelial cell migration/invasion;
angiogenesis
inflammation
Cell proliferation, cell migration/invasion
Apoptosis; autocrine growth arrest
Epithelial-to-mesenchymal transition;
cell migration/invasion; inflammation
autocrine growth arrest Epithelial-to-mesenchymal transition;
cell migration/invasion; inflammation
autocrine growth arrest Tissue remodeling; cell migration/ invasion; wound healing (resolution of fibrosis)
Inflammation; cell migration/invasion
Senescent cells may disrupt normal tissues structure and function
epithelial cell
ST
R
O
M
A
EPITHELIUM
Young tissue
Basement Membrane
young fibroblasts
aging
senescent epithelial cell
Old tissue
E
P
I
T
H
E
L
I
U
M
ST
R
O
M
A
Basement Membrane
senescent fibroblasts
Degradative enzymes (MMPs)
Inflammatory cytokines
As senescent cells accumulate with age, the produced degradative enzyme inflammatory
cytokines, can disrupt the tissue structure and, consequently decrease tissue function Campisi Cell 2005
Senescent cells may promote cancer progression
« initiated cell » epithelial cells
ST
R
O
M
A
EPITHELIUM
Young tissue
Basement Membrane
young fibroblasts
aging
Senescent epithelial cell Old tissue
Neoplastic growth
E
P
I
T
H
E
L
I
U
M
ST
R
O
M
A
Basement Membrane
senescent fibroblasts
Degradative enzymes (MMPs)
Inflammatory cytokines
Growth factors!
(autocrine &paracrine)
Molecules secreted by senescent cells may create a permissive microenvironment that allows the proliferation and malignant progression of preneoplastic cells
Davalos Cancer Metastasis Rev 2010
Senescence-associated secretory phenotype in cancer
Immune cell
activation!
Autocrine!
senescence!
Pro-tumor
Pararine!
senescence!
Tumor
invasiveness!
Anti-tumor
Angiogenesis!
Cell proliferation!
Di Mitri & Alimonti Trends Cell Biol 2016
Double visage des télomères
promouvoir la sénescence cellulaire et le vieillissement de l’organisme
encourager la prolifération désordonnée et la tumorigénicité
Rôle de télomères et de la télomérase dans le développement tumoral
Fibroblaste: télomérase négatif
Taille des télomères (kb)
10-12
+hTERT
immortalisation
inactivation
p53/pRb
HPV-E6/E7
SV40-T
cellules tumorales:
télomérase positive
6
réactivation de la télomérase
mort cellulaire
crise des télomères
M1 ou
sénescence
M2 ou
crise
divisions cellulaires
Telomere length, telomerase and immortal transformation Telomere length Telomerase reactivation
Normal duct
Hyperplasia carcinoma
in situ invasive cancer Genome instability Loss of telomere function
Further evolution
Genomic instability driven by progressive telomere shortening occurs early in tumour development after which the genome appears to stabilise with advancing malignancy, roughly coincident with the activation of telomerase Accumulation of karyotype abnormalities during cancer progression
Normal cell
Cancer cell 24-colors hybridization of metaphasic chromosomes (SKY ou M-FISH)
Telomere attrition and perpetuation of the BFB cycle
Too short telomere expose the ends
DNA repair functions create
chromosome fusion
Anaphase bridging during segregation in mitosis
Breakage-Fusion-Bridge
(BFB) cycle
Rearranged chromosome Cancer
Modèle de souris transgéniques pour l’étude du rôle des télomères dans le cancer
 Souris Terc-/- issues de générations tardives (G6) présentent une augmentation globale des cancers spontanés et une activation anormale de p53
 Souris Terc-/- et p53-/- très susceptibles au développement des cancers dans les générations tardives. Les souris Terc-/- et p53-/- sont fertiles. En G8, forte mortalité des cellules germinales correspondrait à la crise.  Souris Terc-/- et Ink4a-/- présente une réduction de la fréquence d’apparition des cancers dans les générations tardives car déclenchement de barrières télomériques dépendante de p53
Schematic representation of telomere structure in a T-loop configuration
5-15kb
TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG-3’
AATCCCAATCCCAATCCCAATCCCAATCCCAATCCCAATCCCAATCCC-5’
3’G-rich overhang (~150bp)
telomere proteins T-loop Strand invasion of the 3’ overhang
Electron micrograph of a telomere (Griffith et al., Cell 1999)
-Telomeric DNA consists of tandemly repeated, short nucleotide sequence motifs (TTAGGG in humans)
-Composed of double-stranded TTAGGG repeats (5-15kb) and a 3’ single-stranded G-rich overhang (50-150bp)
-Telomeric repeats are covered by telomere binding proteins
-Telomere is folded back into a telomeric loop (T-loop)
Schematic model of shelterin complex bound to a telomere in a T-loop
configuration Shelterin is essential for telomere length control and telomere protection
Repression of DNA-damage signaling pathways at telomeres
Shelterin complex : TRF1, TRF2, Tin2, Pot1, TPP1, hRap1
ATM kinase
pathway block ATR kinase
pathway block
Specific function associated with each shelterin protein and to the telomerase
Martinez&Blasco Aging Cell 2010
Different components of shelterin are dedicated to different aspects of the endprotection problem
T-loop opens
Exposed 3’ overhang
Palm & de Lange Annu. Rev. Genet. 2008
Repression of NHEJ at telomere by TRF2 by forming the T-loop
NHEJ
TRF2 loss
NHEJ
unprotected telomere
recruitment ERCC1/XPF
overhang cleavage
End-joining
Dicentric chromosome
Palm & de Lange Annu. Rev. Genet. 2008
Telomere-associated proteins
assist with proper chromatin structure, chromosome end protection, telomere length regulation and processing
TRF2 complex
TRF1 complex
XPF-ERCC1
(Xeroderma pigmentosum)
TANK
TRF2
TRF1
WRN
(-TTAGGG)n
MRE11/NBS1/RAD50
(Nijmegen breakage
syndrome)
POT1
(altered in some tumours)
(Werner syndrome)
(altered in some tumours)
BLM
(Bloom syndrome)
RAP1
ATM
(Ataxia Telangiectasia syndrome)
(altered in some tumours)
PARP1/2
(altered in some tumours)
Ku86
TPP1
RAP1
TRF2
(altered in some tumours)
TIN2
(altered in some tumours)
Déprotection spontanée des télomères au cours du cycle cellulaire
Phase G1 :
protection télomérique
boucle
télomérique
TRF2
Phase S phase :
réplication des télomères
Voie de réponse au dommages de l’ADN Fusion chromosomique
TRF1
Erreurs de réplication des télomères Fragilité télomèrique
Hélicases
Phases S et G2 : processivité
et remodelage des extrémités
télomériques
γ-H2AX TRF2 / POT1
Activation transitoire de la voie de
réponse aux dommages de l’ADN Protéines de recombinaison
Télomères se réorganisent en structure protective
Verdun et al, Mol Cell 2005
Verdun et al, Cell 2006 Maintien de la fonction des télomères
1- Le complexe protéique télomérique : protège et régule la structure des télomères
2- La télomérase Shelterin : TRF1, TRF2, Tin2, Pot1, TPP1, hRap1
Activation
DDR
bloquée accès
télomérase
bloqué Modèle de régulation de la télomérase par les protéines télomériques, Pot1
et TPP1
TPP1 interagit directement avec la télomérase et peut faciliter le recrutement de l’enzyme
au télomère. Pot1 serait un régulateur négatif de la télomérase car entre en compétition avec la télomérase pour la liaison sur le brin 3’. Mouse models for shelterin components and their cancer and aging phenotype Genotype cancer phenotype TRF1-KO
embryonic lethal
rapid development of preneoplastic lesions
at 1-3 days of age
TRF1Δ/Δ K5-Cre
(conditional) aging phenotype
hyperpigmentation, epithelia degenerative
pathology, defcetive hair follicle development
TRF2-KO
embryonic lethal
K5-TRF2
increased susceptibility to spontaneous
and induced skin cancer premature skin deterioration, hyperpigmentation,
alopecia
Pot1a-KO
embryonic lethal
Pot1b-KO
not reported
not reported hyperpigmentation and fatal bone marrow failure
TIN2-KO
embryonic lethal
RAP1-KO
not reported viable
Pot1b-KO Terc+/-
Martinez&Blasco Aging Cell 2010
Implication pour la clinique:
Stratégies anti-tumorales visant à mimer les signaux télomériques
1•Bloquer l’activité catalytique de la télomérase
-Inhibiteurs de hTERT
-Inhibiteurs de chaperons Pot1
TPP1
PINX1
Tin2
TRF1
TRF2
Tankyrase
WRN
BLM
Pot1
TPP1
ERCC1
Tin2
XPF
TRF1
TRF2
hRAP1
3’
TEP1 hsp90
TERT
VPARP
dyskérine
TERC
5’
2•Bloquer l’ARN matrice TERC
3•Cibler l’ADN télomérique
-Modification de la structure de l’ADN : G-quadruplex
-Modification de la fixation des protéines télomériques
Une approche de thérapie anti-tumorale ciblant le télomère
instabilité
génomique
mimer la sénescence
apoptose
approche
actuelle
résistance
télomérase
Temps de traitement
cellules cancéreuses
approche
alternative ?
apoptose
télomère
Temps de traitement
Téléchargement