Cours sur le transistor bipolaire (version projection)

publicité
Le transistor bipolaire
Pascal MASSON
([email protected])
Edition 2015-2016
Pascal MASSON
École Polytechnique Universitaire de Nice Sophia-Antipolis
Parcours des écoles d'ingénieurs Polytech (Peip)
-Parcours des écoles
d'ingénieurs
Polytech
(Peip)
Le transistor bipolaire
1645 route
des Lucioles,
06410 BIOT
Sommaire
I.
Historique
II.
Caractéristiques du transistor
III.
Polarisation du transistor
IV.
Les fonctions logiques
V.
Amplification en classe A
VI.
Multivibrateur astable ABRAHAM BLOCH
VII.
Amplification en classe B
VIII. Amplificateur opérationnel
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
I. Historique
I.1. Définition
 Le transistor bipolaire est un composant électronique utilisé comme :
interrupteur commandé, amplificateur, stabilisateur de tension, modulateur
de signal …
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
I. Historique
I.2. Histoire du transistor
 1947 : John BARDEEN et Walter BRATTAIN inventent le
transistor à contact (transistor) au laboratoire de physique
de la société BELL (USA). Cette découverte est annoncée en
juillet 1948.
Transistor à
contact 1948
 1948 : Herbert MATARE et Heinrich WELKER inventent
(indépendamment de BELL) aussi le transistor à contact
en juin 1948 (en France). Ce transistor sera appelé le
Transistron 1948
Transistron pour le distinguer de celui de BELL.
 1948 : en janvier William SHOCKLEY invente le
transistor à jonction (bipolaire) mais la technique de
fabrication ne sera maitrisée qu’en 1951
Transistor à
jonction 1948
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
I. Historique
I.2. Histoire du transistor
 Les
transistors
remplacent
les
contacteurs
électromécaniques des centraux téléphoniques et
les tubes dans les calculateurs.
1953 – calculateur
(93 transistors + 550 diodes)
 1953
Sonotone
1010
:
première
application
portative
transistor entant que sonotone.
 1954 : première radio
Régency TR-1
(4 transistors)
à transistors.
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
du
I. Historique
I.3. Histoire des premiers circuits intégrés
 1958 : Jack KILBY de Texas Instrument
présente
le
premier
circuit
(oscillateur)
entièrement intégré sur une plaque de semiconducteur.
1958 – premier circuit intégré
 1960 : production de la première
mémoire
Flip
Flop
par
la
Fairchild Semiconductor.
1960 – Flip Flop en circuit intégré
 1965 : à partir du nombre de composants par circuit
intégré
fabriqué
depuis
1965,
Gordon
MOORE
(Fairchild Semiconductor) prédit que le nombre de
composants intégrés (par unité de surface) doublera
tous les 12 mois. Cette loi est toujours vraie !
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
société
II. Caractéristiques du transistor
II.1. Définition d’un transistor bipolaire
 Le transistor bipolaire est créé en juxtaposant trois couches de semiconducteur dopés N+, P puis N pour le transistor NPN (courant dû à un flux
d’électrons) ou dopés P+, N puis P pour le transistor PNP (courant dû à un flux
de trous). Le niveau de dopage décroit d’un bout à l’autre de la structure.
 Un faible courant de base, IB, permet de commander un courant de
collecteur, IC, bien plus important.
II.2. Représentation
collecteur
collecteur
émetteur
collecteur
IC
VCE
base
VBE
IB N
P
N+
IC
IE
émetteur
base
Pascal MASSON
VCE
base
Transistor NPN
-Parcours des écoles d'ingénieurs Polytech (Peip)
VBE
IB P
N
P+
émetteur
Transistor PNP
Le transistor bipolaire
IE
II. Caractéristiques du transistor
II.3. Fonctionnement du transistor NPN
B
P
N
E
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
II. Caractéristiques du transistor
II.3. Fonctionnement du transistor NPN
 Si la tension VBE est suffisante, la diode BE
(base –émetteur) est passante :
 Courant de trous de B vers E.
 Courant d’électrons de E vers B
 qV 
 qV 
I  IS. exp  BE   ISt  ISe . exp  BE 
 kT 
 kT 
B
P
VBE
N
E
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
II. Caractéristiques du transistor
II.3. Fonctionnement du transistor NPN
 Si la tension VBE est suffisante, la diode BE
(base –émetteur) est passante :
 Courant de trous de B vers E.
 Courant d’électrons de E vers B
 qV 
 qV 
I  IS. exp  BE   ISt  ISe . exp  BE 
 kT 
 kT 
B
P
 Si le nombre d’électrons dans l’émetteur et
100 fois plus grand que le nombre de trous
VBE
dans la base alors ISt << ISe.
N+
E
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
II. Caractéristiques du transistor
II.3. Fonctionnement du transistor NPN
 On positionne à présent le collecteur dopé N
C
N
B
P
VBE
N
E
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
II. Caractéristiques du transistor
II.3. Fonctionnement du transistor NPN
 On positionne à présent le collecteur dopé N
C
 La jonction BC est polarisée en inverse :
N
augmentation du champs électrique interne.
VBC

B
P
VBE
N
E
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
II. Caractéristiques du transistor
II.3. Fonctionnement du transistor NPN
 On positionne à présent le collecteur dopé N
C
 La jonction BC est polarisée en inverse :
N
augmentation du champs électrique interne.
 La longueur de la base est très courte et les
électrons arrivent tous au niveau de la ZCE Base-
VBC

collecteur.
B
P
VBE
N
E
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
II. Caractéristiques du transistor
II.3. Fonctionnement du transistor NPN
 On positionne à présent le collecteur dopé N
C
 La jonction BC est polarisée en inverse :
N
augmentation du champs électrique interne.
 La longueur de la base est très courte et les
électrons arrivent tous au niveau de la ZCE Base-
VBC

collecteur.
 Les électrons sont propulsés dans le collecteur
pas le champ électrique.
B
P
VBE
N
E
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
II. Caractéristiques du transistor
II.3. Fonctionnement du transistor NPN
 On positionne à présent le collecteur dopé N
C
 La jonction BC est polarisée en inverse :
N
augmentation du champs électrique interne.
 La longueur de la base est très courte et les
électrons arrivent tous au niveau de la ZCE Base-
VBC

collecteur.
 Les électrons sont propulsés dans le collecteur
pas le champ électrique.
 Si on modifie la tension VBC (dans une certaine
limite), le champ électrique est toujours suffisant
B
P
VBE
pour propulser tous les électrons :
N
Le courant de collecteur ne dépend pas de la
tension VBC mais uniquement de VBE.
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
E
Le transistor bipolaire
II. Caractéristiques du transistor
II.3. Fonctionnement du transistor NPN
 Par convenance on pose : VT  q (  25.6 mV à 300K)
kT
 Les trois courants du transistor bipolaire sont :
 IB : courant de trous de B vers E.
V 
I B  ISt . exp  BE 
 VT 
 IC : courant d’électrons de E vers C
V 
I C  ISe . exp  BE 
IB
 VT 
B
 IE : courant de trous de B vers E + courant
C
IC
N

P
d’électrons de E vers C
V 
I E  IS. exp  BE   I B  IC
 VT 
 Le rapport, , entre les courants IC et IB dépend entre
N
autres des niveaux de dopage de l’émetteur et de la base
ainsi que de l’épaisseur de la base : IC = .IB
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
E
IE
Le transistor bipolaire
II. Caractéristiques du transistor
II.3. Fonctionnement du transistor NPN
 Si la tension VBC augmente trop :
C
 Le champ électrique base – collecteur diminue
IC
N

B
IB
P
N
E
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
IE
Le transistor bipolaire
II. Caractéristiques du transistor
II.3. Fonctionnement du transistor NPN
 Si la tension VBC augmente trop :
C
 Le champ électrique base – collecteur diminue
IC
N
 Les électrons ne sont plus tous propulsés
dans le collecteur mais une partie sort par la
base

 Le courant IC tend à devenir nul
 On dit dans ce cas que le transistor est saturé
B
IB
P
 La tension VCE pour laquelle ce phénomène
apparaît est notée VCEsat.
N
E
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
IE
Le transistor bipolaire
II. Caractéristiques du transistor
II.3. Caractéristiques IB(VBE) du transistor NPN
 Pour débloquer (rendre passant) le transistor NPN, il faut que la jonction
base-émetteur soit polarisée en direct avec une tension supérieure à la tension
de seuil, VS, de cette diode : VBE > VS.
 La caractéristique IB(VBE) est celle de la diode base-émetteur en ne
considérant que le courant de trou.
 Ici le courant de trous est bien plus faible que le courant d’électrons.
collecteur
IC
VCE
base
VBE
IB N
P
N+
IB (A)
inverse
IE
émetteur
Pascal MASSON
directe
-Parcours des écoles d'ingénieurs Polytech (Peip)
0
VS
VBE (V)
Le transistor bipolaire
II. Caractéristiques du transistor
II.3. Caractéristiques IB(VBE) du transistor PNP
 Pour débloquer (rendre passant) le transistor PNP, il faut que la jonction
base-émetteur soit polarisée en direct avec une tension supérieure (en valeur
absolue) à la tension de seuil, VS, de cette diode soit : VBE < VS.
 La caractéristique IB(VBE) est celle de la diode base-émetteur en ne
considérant que le courant des électrons.
 Ici le courant des électrons est bien plus faible que le courant des trous.
collecteur
IB (A)
IC
VCE
base
VBE
IB P
N
P+
directe
IE
émetteur
Pascal MASSON
inverse
-Parcours des écoles d'ingénieurs Polytech (Peip)
VS
0
VBE (V)
Le transistor bipolaire
II. Caractéristiques du transistor
II.3. Caractéristiques IC(VCE) du transistor NPN
 Si la jonction BC est polarisée en inverse, alors le courant d’électrons peut
traverser cette jonction.
 Dans ce cas le courant IC est indépendant de VCE : régime linéaire (IC = .IB)
collecteur
IC
VCE
base
VBE
émetteur
Pascal MASSON
IB
N
P
N+
IB4
IC (A)
IB3
IB2 > IB1
IB1
IE
0
-Parcours des écoles d'ingénieurs Polytech (Peip)
VCE (V)
Le transistor bipolaire
II. Caractéristiques du transistor
II.3. Caractéristiques IC(VCE) du transistor NPN
 Si la jonction BC est polarisée en inverse, alors le courant d’électrons peut
traverser cette jonction.
 Dans ce cas le courant IC est indépendant de VCE : régime linéaire (IC = .IB)
 Si VCE = 0 alors aucun courant ne circule entre l’émetteur et le collecteur
collecteur
IC
VCE
base
VBE
émetteur
Pascal MASSON
IB
N
P
N+
IB4
IC (A)
IB3
IB2 > IB1
IB1
IE
0
-Parcours des écoles d'ingénieurs Polytech (Peip)
VCE (V)
Le transistor bipolaire
II. Caractéristiques du transistor
II.3. Caractéristiques IC(VCE) du transistor NPN
 Si la jonction BC est polarisée en inverse, alors le courant d’électrons peut
traverser cette jonction.
 Dans ce cas le courant IC est indépendant de VCE : régime linéaire (IC = .IB)
 Si VCE = 0 alors aucun courant ne circule entre l’émetteur et le collecteur
 Le basculement entre ces deux fonctionnements se produit à la tension
VCEsat (sat pour saturation) : le courant IC n’est pas proportionnel à IB.
saturé
collecteur
IC
VCE
base
VBE
émetteur
Pascal MASSON
IB
N
P
N+
Linéaire
IB4
IC (A)
IB3
IB2 > IB1
IB1
IE
0
-Parcours des écoles d'ingénieurs Polytech (Peip)
VCEsat
VCE (V)
Le transistor bipolaire
II. Caractéristiques du transistor
II.4. Bilan des caractéristiques IB(VBE) et IC(VCE)
C
Bloqué : VBE < VS, IB = 0, IC = 0
IC
N
IB (A)

0
VS
VBE (V)
B
IB
P
IC (A)
N
0
Pascal MASSON
VCEsat
VCE (V)
-Parcours des écoles d'ingénieurs Polytech (Peip)
E
IE
Le transistor bipolaire
II. Caractéristiques du transistor
II.4. Bilan des caractéristiques IB(VBE) et IC(VCE)
C
Passant_Linéaire : VBE > VS, IB > 0, IC = .IB
IC
N
IB (A)

0
VS
VBE (V)
B
IB
P
IC (A)
N
0
Pascal MASSON
VCEsat
VCE (V)
-Parcours des écoles d'ingénieurs Polytech (Peip)
E
IE
Le transistor bipolaire
II. Caractéristiques du transistor
II.4. Bilan des caractéristiques IB(VBE) et IC(VCE)
C
Passant_Linéaire : VBE > VS, IB > 0, IC = .IB
IC
N
IB (A)

0
VS
VBE (V)
B
IB
P
IC (A)
N
0
Pascal MASSON
VCEsat
VCE (V)
-Parcours des écoles d'ingénieurs Polytech (Peip)
E
IE
Le transistor bipolaire
II. Caractéristiques du transistor
II.4. Bilan des caractéristiques IB(VBE) et IC(VCE)
C
Passant_Linéaire : VBE > VS, IB > 0, IC = .IB
IC
N
IB (A)

0
VS
VBE (V)
B
IB
P
IC (A)
N
0
Pascal MASSON
VCEsat
VCE (V)
-Parcours des écoles d'ingénieurs Polytech (Peip)
E
IE
Le transistor bipolaire
II. Caractéristiques du transistor
II.4. Bilan des caractéristiques IB(VBE) et IC(VCE)
C
Passant_Linéaire : VBE > VS, IB > 0, IC = .IB
IC
N
IB (A)

0
VS
VBE (V)
B
IB
P
IC (A)
N
0
Pascal MASSON
VCEsat
VCE (V)
-Parcours des écoles d'ingénieurs Polytech (Peip)
E
IE
Le transistor bipolaire
II. Caractéristiques du transistor
II.4. Bilan des caractéristiques IB(VBE) et IC(VCE)
C
Passant_Linéaire : VBE > VS, IB > 0, IC = .IB
IC
N
IB (A)

0
VS
VBE (V)
B
IB
P
IC (A)
N
0
Pascal MASSON
VCEsat
VCE (V)
-Parcours des écoles d'ingénieurs Polytech (Peip)
E
IE
Le transistor bipolaire
II. Caractéristiques du transistor
II.4. Bilan des caractéristiques IB(VBE) et IC(VCE)
C
Passant_Saturé : VBE > VS, IB > 0, IC < .IB, VCE < VCEsat
IC
N
IB (A)

0
VS
VBE (V)
B
IB
P
IC (A)
N
0
Pascal MASSON
VCEsat
VCE (V)
-Parcours des écoles d'ingénieurs Polytech (Peip)
E
IE
Le transistor bipolaire
II. Caractéristiques du transistor
II.4. Bilan des caractéristiques IB(VBE) et IC(VCE)
C
Passant_Saturé : VBE > VS, IB > 0, IC < .IB, VCE < VCEsat
IC
N
IB (A)

0
VS
VBE (V)
B
IB
P
IC (A)
N
0
Pascal MASSON
VCEsat
VCE (V)
-Parcours des écoles d'ingénieurs Polytech (Peip)
E
IE
Le transistor bipolaire
II. Caractéristiques du transistor
II.4. Bilan des caractéristiques IB(VBE) et IC(VCE)
 Si on déconnecte le collecteur, le courant de base correspond à la somme des
trous et des électrons (IB = h+ + e). La résistance série est de l’ordre de l’ohm
B
IB (A)
IB
P
h+ + e
VBE
e
h+
N
0
Pascal MASSON
VBE (V)
-Parcours des écoles d'ingénieurs Polytech (Peip)
E
Le transistor bipolaire
II. Caractéristiques du transistor
II.4. Bilan des caractéristiques IB(VBE) et IC(VCE)
 En régime linéaire, le courant de base est constitué
C
uniquement de trous (IB = h+) donc la résistance série
IC
N
de la diode est beaucoup plus grande, de l’ordre du
kohm

B
IB (A)
IB
P
h+ + e
VBE
e
h+
N
0
Pascal MASSON
VBE (V)
-Parcours des écoles d'ingénieurs Polytech (Peip)
E
IE
Le transistor bipolaire
II. Caractéristiques du transistor
II.4. Bilan des caractéristiques IB(VBE) et IC(VCE)
 En régime saturé, le courant de base est constitué
C
des trous et d’une partie des électrons (IB = h+ + .e)
IC
N

IB (A)
h+ + e
h+
+
.e
B
IB
P
e
h+
N
0
Pascal MASSON
VBE (V)
-Parcours des écoles d'ingénieurs Polytech (Peip)
E
IE
Le transistor bipolaire
III. Polarisation du transistor
III.1. Polarisation simple
 Détermination de IB0 et IC0
 La boucle d’entrée permet de déterminer la valeur de IB
I B0 
E G  R B.I B0  VS  R S.I B0
E G  VS
R B  RS
VBE0  VS  R S.I B0
VDD
RC
IB (A)
EG/RB
RB
IB0
0
Pascal MASSON
EG
VS VBE0
IB
IC
VBE
EG VBE (V)
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.1. Polarisation simple
 Détermination de IB0 et IC0
 On considère que le transistor est en régime linéaire
I C  .I B
VDD
RC
RB
EG
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
IB
IC
VBE
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.1. Polarisation simple
 Détermination de IB0 et IC0
 On considère que le transistor est en régime linéaire
I C  .I B
 On peut donc résumer le transistor à trois éléments :
 En entrée : VS et RS (donc la diode base-émetteur)
 En sortie: un générateur de courant IC = .IB
VDD
RC
RB
EG
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
IB
VBE
IC
IC VCE
Le transistor bipolaire
III. Polarisation du transistor
III.1. Polarisation simple
 Détermination de IB0 et IC0
 Il faut à présent vérifier si le transistor est réellement en régime linéaire par
le calcul de VCE
VCE  VDD  R C .IC
VDD  R C .IC  VCE
 Si VCE > VCEsat alors on confirme le régime linéaire et les calculs sont exacts
VDD
RC
IC
VDD/RC
RB
IB0
IC0
EG
0 VCEsatVCE0
Pascal MASSON
VDD
IB
IC
VBE
VCE
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.1. Polarisation simple
 Détermination de IB0 et IC0
 Si VCE < VCEsat le transistor est en régime saturé et l’utilisation de la droite
de charge donne les vraies valeurs de IC0 et VCE0
 Si on utilise pas la droite de charge, on impose VCE = VCEsat et on détermine
la valeur de IC avec la boucle de sortie.
I C0 
VDD  R C .IC0  VCEsat
VDD  VCEsat
RC
VDD
RC
IC
VDD/RC
IC0
RB
IB0
EG
0 VCEsatVCE0
Pascal MASSON
VDD
IB
IC
VBE
VCE
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.1. Polarisation simple
 Détermination de IB0 et IC0
 Il faut aussi re-déterminer la véritable valeur du courant de base.
 Les électrons qui passent de l’émetteur à la base ne sont pas tous propulsés
au collecteur et une partie sort par la base.
 Les valeurs de VS et RS sont donc différentes
VDD
RC
IB (A)
EG/RB
RB
IB
IC
IB0
EG
0
Pascal MASSON
VS VBE0
VBE
EG VBE (V)
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.1. Polarisation simple
VDD
 Variation de RB avec RC constant
RC
 On part d’une valeur de RB suffisamment grande
pour que le transistor soit en régime linéaire
RB
 La droite de charge en sortie ne change pas
 On diminue alors RB
EG
IC
IB
VCE
VBE
IC
IB (A)
VDD/RC
IB0
EG/RB
0
Pascal MASSON
VS
EG VBE (V)
0 VCEsat
-Parcours des écoles d'ingénieurs Polytech (Peip)
VDD
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.1. Polarisation simple
VDD
 Variation de RB avec RC constant
RC
 On part d’une valeur de RB suffisamment grande
pour que le transistor soit en régime linéaire
RB
 La droite de charge en sortie ne change pas
 On diminue alors RB
EG
IC
IB
VCE
VBE
IC
IB (A)
VDD/RC
IB0
EG/RB
0
Pascal MASSON
VS
EG VBE (V)
0 VCEsat
-Parcours des écoles d'ingénieurs Polytech (Peip)
VDD
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.1. Polarisation simple
VDD
 Variation de RB avec RC constant
RC
 On part d’une valeur de RB suffisamment grande
pour que le transistor soit en régime linéaire
RB
 La droite de charge en sortie ne change pas
 On diminue alors RB
EG
IC
IB
VCE
VBE
IC
IB (A)
VDD/RC
IB0
EG/RB
0
Pascal MASSON
VS
EG VBE (V)
0 VCEsat
-Parcours des écoles d'ingénieurs Polytech (Peip)
VDD
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.1. Polarisation simple
VDD
 Variation de RB avec RC constant
RC
 On part d’une valeur de RB suffisamment grande
pour que le transistor soit en régime linéaire
RB
 La droite de charge en sortie ne change pas
 On diminue alors RB
EG
IB
0
Pascal MASSON
VDD/RC
VS
EG VBE (V)
0 VCEsat
-Parcours des écoles d'ingénieurs Polytech (Peip)
VCE
VBE
IC
IB (A)
EG/RB
IC
IB0
IC0
VDD
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.1. Polarisation simple
VDD
 Variation de RC avec RB constant
RC
 On part d’une valeur de RC suffisamment faible
pour que le transistor soit en régime linéaire
RB
 La droite de charge en entrée ne change pas
 On augmente alors RC
EG
IC
IC
IB
VCE
VBE
VDD/RC
IB (A)
IB0
EG/RB
IB0
0
Pascal MASSON
VS
EG VBE (V)
0 VCEsat
-Parcours des écoles d'ingénieurs Polytech (Peip)
VDD
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.1. Polarisation simple
VDD
 Variation de RC avec RB constant
RC
 On part d’une valeur de RC suffisamment faible
pour que le transistor soit en régime linéaire
RB
 La droite de charge en entrée ne change pas
 On augmente alors RC
EG
IC
IB
VCE
VBE
IC
IB (A)
VDD/RC
IB0
EG/RB
IB0
0
Pascal MASSON
VS
EG VBE (V)
0 VCEsat
-Parcours des écoles d'ingénieurs Polytech (Peip)
VDD
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.1. Polarisation simple
VDD
 Variation de RC avec RB constant
RC
 On part d’une valeur de RC suffisamment faible
pour que le transistor soit en régime linéaire
RB
 La droite de charge en entrée ne change pas
 On augmente alors RC
EG
IC
IB
VCE
VBE
IC
IB (A)
VDD/RC
EG/RB
IB0
IB0
0
Pascal MASSON
VS
EG VBE (V)
0 VCEsat
-Parcours des écoles d'ingénieurs Polytech (Peip)
VDD
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.1. Polarisation simple
VDD
 Variation de RC avec RB constant
RC
 On part d’une valeur de RC suffisamment faible
pour que le transistor soit en régime linéaire
RB
 La droite de charge en entrée ne change pas
 On augmente alors RC
EG
IC
IB
VCE
VBE
IC
IB (A)
VDD/RC
EG/RB
IC0
IB0
IB0
0
Pascal MASSON
VS
EG VBE (V)
0 VCEsat
-Parcours des écoles d'ingénieurs Polytech (Peip)
VDD
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.2. Pont de base
 Les résistances R1 et R2 forment un pont entre la base et VDD d’où le nom.
 La détermination de IB passe par celle de IP.
VDD
R1
IP + IB
IP
RC
IB
VBE
R2
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.2. Pont de base
 IB : approche simple
 On considère que IP >>> IB.
 Dans ce cas un simple pont diviseur de tension permet de connaître la valeur
de VBE et par suite la valeur de IB.
VBE 
VDD
R2
VDD
R1  R 2
 Puis on détermine IB.
V
 VS
IB  BE
RS
R1
IP + IB
IP
RC
IB
VBE
R2
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.2. Pont de base
 IB : système de 2 équations
 On résout un système de deux équations qui correspond à l’ écriture de deux
mailles en entrée
(1)
VBE  R 2 .I P  VS  R S.I B
(2)
VDD  R1.I P  I B   VBE  R1.I P  VS  R1  R S I B
R1
 On trouve
R

VDD   1  1VS
 R2

IB 
R
R1  R S  R S . 1
R2
Pascal MASSON
VDD
(2)
-Parcours des écoles d'ingénieurs Polytech (Peip)
IP + IB
IP
R2
RC
IB
VBE
(1)
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.2. Pont de base
 IB : Thévenin
 On peut aussi transformer VDD, R1 et R2 en générateur de thévenin
VDD
R1
IP + IB
IP
R2
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
RC
IB
VBE
Thévenin
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.2. Pont de base
 IB : Thévenin
 On peut aussi transformer VDD, R1 et R2 en générateur de thévenin
VDD
RC
Rth
IB
VBE
Eth
Thévenin
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.2. Pont de base
 IB : Thévenin
 On peut aussi transformer VDD, R1 et R2 en générateur de thévenin
VDD
RC
Eth
Thévenin
Rth
IB
VBE
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.2. Pont de base
 IB : Thévenin
 On peut aussi transformer VDD, R1 et R2 en générateur de thévenin
 On débranche la base du transistor pour éliminer le courant IB
VDD
R1
RC
VCE
R2
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
III. Polarisation du transistor
III.2. Pont de base
 IB : Thévenin
 On peut aussi transformer VDD, R1 et R2 en générateur de thévenin
 On débranche la base du transistor pour éliminer le courant IB
 Pour déterminer Rth, on éliminer les sources (ici VDD = 0) ce qui donne R1 // R2
R th 
VDD
R1.R 2
R1  R 2
R1
RC
VCE
R2
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
III. Polarisation du transistor
III.2. Pont de base
 IB : Thévenin
 On peut aussi transformer VDD, R1 et R2 en générateur de thévenin
 On débranche la base du transistor pour éliminer le courant IB
 Pour déterminer Rth, on éliminer les sources (ici VDD = 0) ce qui donne R1 // R2
R th 
VDD
R1.R 2
R1  R 2
RC
Rth
VCE
Eth
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
III. Polarisation du transistor
III.2. Pont de base
 IB : Thévenin
 On peut aussi transformer VDD, R1 et R2 en générateur de thévenin
 On débranche la base du transistor pour éliminer le courant IB
 Pour déterminer Rth, on éliminer les sources (ici VDD = 0) ce qui donne R1 // R2
R th 
VDD
R1.R 2
R1  R 2
 On détermine alors Eth avec un pont
R1
RC
diviseur de tension
E th 
R2
VDD
R1  R 2
VCE
R2
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Eth
Le transistor bipolaire
III. Polarisation du transistor
III.2. Pont de base
 IB : Thévenin
 On peut aussi transformer VDD, R1 et R2 en générateur de thévenin
 On débranche la base du transistor pour éliminer le courant IB
 Pour déterminer Rth, on éliminer les sources (ici VDD = 0) ce qui donne R1 // R2
R th 
VDD
R1.R 2
R1  R 2
RC
 On détermine alors Eth avec un pont
diviseur de tension
E th 
Rth
R2
VDD
R1  R 2
VCE
Eth
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Eth
Le transistor bipolaire
III. Polarisation du transistor
III.2. Pont de base
 IB : Thévenin
 On peut aussi transformer VDD, R1 et R2 en générateur de thévenin
 On débranche la base du transistor pour éliminer le courant IB
 Pour déterminer Rth, on éliminer les sources (ici VDD = 0) ce qui donne R1 // R2
R th 
VDD
R1.R 2
R1  R 2
RC
 On détermine alors Eth avec un pont
diviseur de tension
Rth
R2
E th 
VDD
R1  R 2
 D’où IB :
IB 
E th  VS
R th  R S
Pascal MASSON
IB
VBE
Eth
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.2. Pont de base
 IB : Thévenin
 On retrouve le théorème de Thévenin à partir des deux mailles en entrée :
VBE  R 2 .I P
VDD  R1.I P  I B   VBE
VDD
 On extrait IP de la première équation
que l’on reporte dans la deuxième
V
VDD  R1. BE  R1.I B  VBE
R2
 Qui s'écrit aussi en regroupant les VBE
 R  R2 
VBE
VDD  R1.I B   1
R
2 

Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
R1
IP + IB
IP
RC
IB
VBE
R2
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.2. Pont de base
 IB : Thévenin
 On retrouve le théorème de Thévenin à partir des deux mailles en entrée :
VBE  R 2 .I P
VDD  R1.I P  I B   VBE
VDD
 On extrait IP de la première équation
que l’on reporte dans la deuxième
V
VDD  R1. BE  R1.I B  VBE
R2
 Qui s'écrit aussi en regroupant les VBE
R2
R .R
VDD  1 2 .I B  VBE
R1  R 2
R1  R 2
E th
Pascal MASSON
R1
IP + IB
IP
RC
IB
VBE
R2
R th
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.3. Résistance d’émetteur
 Dans la résistance RE il passe le courant IE donc les courants IB et IC
 La maille en entrée s'écrit :
E th  R th .I B  VS  R S.I B  R E .I B  IC 
E th  R th .I B  VS  R S.I B  R E .1  .I B
 On trouve le courant IB
E th  VS
IB 
R th  R S  1  .R E
VDD
Erreur classique :
oublie du 
Rth
 Vu de l’entrée (donc de IB), la résistance
RE est multipliée par (1+)
 En fonction de la valeur de  on peut
écrire :
1  .R E  .R E
Pascal MASSON
RC
IB
VBE
Eth
-Parcours des écoles d'ingénieurs Polytech (Peip)
RE
Le transistor bipolaire
VCE
III. Polarisation du transistor
III.3. Résistance d’émetteur
 La présence de RE permet une régulation thermique du transistor
 En fonctionnement, le transistor chauffe à cause de la circulation du courant
ce qui augmente la valeur du courant qui engendre une augmentation de la
température etc …
 En présence de RE :
T°
IB (A)
VDD
VE
T°
0
IB
VS
VBE (V)
RC
VBE
Rth
IB
 Si la présence de RE n’est pas suffisante, il
IB
VBE
Eth
RE
faut ajouter un radiateur sur le transistor.
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VCE
VE
IV. Les fonctions logiques
IV.1. L’inverseur
 La loi des mailles dans la boucle de sortie donne : VCE  VS  24  R.IC
 On obtient alors la droite de charge :
IB4
R
E
0V
24 VCE

R
R
IC (A)
IC
24 V
6V
IC 
R1
VE
Pascal MASSON
RB
IB
VBE
S
VCE = VS
0
-Parcours des écoles d'ingénieurs Polytech (Peip)
VCE (V)
Le transistor bipolaire
IV. Les fonctions logiques
IV.1. L’inverseur
 La loi des mailles dans la boucle de sortie donne : VCE  VS  24  R.IC
 On obtient alors la droite de charge :
IC 
24 VCE

R
R
 Si VE = 0 V : VBE est
IB4
R
E
0V
IC (A)
IC
24 V
6V
R1
VE
Pascal MASSON
RB
IB
VBE
S
VCE = VS
0
-Parcours des écoles d'ingénieurs Polytech (Peip)
VCE (V)
Le transistor bipolaire
IV. Les fonctions logiques
IV.1. L’inverseur
 La loi des mailles dans la boucle de sortie donne : VCE  VS  24  R.IC
 On obtient alors la droite de charge :
IC 
24 VCE

R
R
 Si VE = 0 V : VBE est négatif (transistor bloqué) et IC = 0 soit VS = 24 V
 Si VE = 24 V : VBE
IB4
R
E
0V
IC (A)
IC
24 V
6V
R1
VE
Pascal MASSON
RB
IB
VBE
S
VCE = VS
A
0
-Parcours des écoles d'ingénieurs Polytech (Peip)
VCE (V)
Le transistor bipolaire
IV. Les fonctions logiques
IV.1. L’inverseur
 La loi des mailles dans la boucle de sortie donne : VCE  VS  24  R.IC
 On obtient alors la droite de charge :
IC 
24 VCE

R
R
 Si VE = 0 V : VBE est négatif (transistor bloqué) et IC = 0 soit VS = 24 V
 Si VE = 24 V : VBE > 0 (transistor passant) et IB = IB4 donc VS  VCEsat  0 V
B
IB4
R
E
0V
IC (A)
IC
24 V
6V
R1
VE
Pascal MASSON
RB
IB
VBE
S
VCE = VS
A
0
-Parcours des écoles d'ingénieurs Polytech (Peip)
VCE (V)
Le transistor bipolaire
IV. Les fonctions logiques
IV.1. L’inverseur
 La loi des mailles dans la boucle de sortie donne : VCE  VS  24  R.IC
 On obtient alors la droite de charge :
IC 
24 VCE

R
R
 Si VE = 0 V : VBE est négatif (transistor bloqué) et IC = 0 soit VS = 24 V
 Si VE = 24 V : VBE > 0 (transistor passant) et IB = IB4 donc VS  VCEsat  0 V
IC (A)
B
IB4
A
0
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
VCE (V)
Le transistor bipolaire
IV. Les fonctions logiques
IV.1. L’inverseur
 La loi des mailles dans la boucle de sortie donne : VCE  VS  24  R.IC
 On obtient alors la droite de charge :
IC 
24 VCE

R
R
 On trace maintenant la caractéristique VS(VE) de l’inverseur.
VS (V) A
24
IC (A)
B
IB4
IB3
IB2 > IB1
VCEsat
B
24 VE (V)
Pascal MASSON
IB1
A
0
-Parcours des écoles d'ingénieurs Polytech (Peip)
VCE (V)
Le transistor bipolaire
IV. Les fonctions logiques
IV.1. L’inverseur
 La loi des mailles dans la boucle de sortie donne : VCE  VS  24  R.IC
 On obtient alors la droite de charge :
IC 
24 VCE

R
R
 On trace maintenant la caractéristique VS(VE) de l’inverseur.
Déblocage
VS (V) A
24
IC (A)
B
IB4
IB3
IB2 > IB1
VCEsat
B
24 VE (V)
Pascal MASSON
IB1
A
0
-Parcours des écoles d'ingénieurs Polytech (Peip)
VCE (V)
Le transistor bipolaire
IV. Les fonctions logiques
IV.1. L’inverseur
 La loi des mailles dans la boucle de sortie donne : VCE  VS  24  R.IC
 On obtient alors la droite de charge :
IC 
24 VCE

R
R
 On trace maintenant la caractéristique VS(VE) de l’inverseur.
Déblocage
VS (V) A
24
IC (A)
B
IB4
IB3
IB2 > IB1
IB = IB1
VCEsat
B
24 VE (V)
Pascal MASSON
IB1
A
0
-Parcours des écoles d'ingénieurs Polytech (Peip)
VCE (V)
Le transistor bipolaire
IV. Les fonctions logiques
IV.1. L’inverseur
 La loi des mailles dans la boucle de sortie donne : VCE  VS  24  R.IC
 On obtient alors la droite de charge :
IC 
24 VCE

R
R
 On trace maintenant la caractéristique VS(VE) de l’inverseur.
Déblocage
VS (V) A
24
IC (A)
B
IB4
IB3
IB2 > IB1
IB = IB1
IB = IB2
VCEsat
IB = IB3
B
24 VE (V)
Pascal MASSON
IB1
A
0
-Parcours des écoles d'ingénieurs Polytech (Peip)
VCE (V)
Le transistor bipolaire
IV. Les fonctions logiques
IV.1. L’inverseur
 La loi des mailles dans la boucle de sortie donne : VCE  VS  24  R.IC
 On obtient alors la droite de charge :
IC 
24 VCE

R
R
 On trace maintenant la caractéristique VS(VE) de l’inverseur.
Déblocage
VS (V) A
24
IC (A)
B
IB4
IB3
IB2 > IB1
IB = IB1
IB = IB2
VCEsat
IB = IB3
B
24 VE (V)
Pascal MASSON
IB1
A
0
-Parcours des écoles d'ingénieurs Polytech (Peip)
VCE (V)
Le transistor bipolaire
IV. Les fonctions logiques
IV.1. L’inverseur
 Table de vérité et symbole logique :
E
S
0
1
1
0
E
S=E
 En pratique on définit un gabarit pour l’inverseur
VS (V)
24
VCEsat
24 VE (V)
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
IV. Les fonctions logiques
IV.2. La fonction NI (NON-OU, NOR)
24 V
6V
 Schéma électrique d’une porte NI :
IC
R2
E2
Pascal MASSON
S = E1+E2
IB
VBE
0V
E1
E2
R
R1
E1
 Table de vérité et symbole logique :
RB
E2
E1
S
0
0
1
0
1
0
1
0
0
1
1
0
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
S
VCE = VS
IV. Les fonctions logiques
IV.3. La fonction mémoire à deux portes NI
 Le but est de stocker l’information 1 ou 0.
 Schéma logique le la mémoire :
Reset
Set
 Table de vérité :
Q
Set Reset
Q
Q
Q
 Chronogramme :
Set 1
0
t
Reset 1
0
t
Q 1
0
t
Q 1
0
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
IV. Les fonctions logiques
IV.3. La fonction mémoire à deux portes NI
 On pose un état initial de la mémoire
 Table de vérité :
0 Reset
0 Set
Q 0
1 Q
Set Reset
0
0
Q
0
Q
1
 Chronogramme :
Set 1
0
t
Reset 1
0
t
Q 1
0
t
Q 1
0
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
IV. Les fonctions logiques
IV.3. La fonction mémoire à deux portes NI
 On met Set à 1 pour stocker l’information 1
 Table de vérité :
0 Reset
1 Set
Q 0
1 Q
0
Set Reset
0
0
1
0
Q
0
Q
1
 Chronogramme :
Set 1
0
t
Reset 1
0
t
Q 1
0
t
Q 1
0
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
IV. Les fonctions logiques
IV.3. La fonction mémoire à deux portes NI
 On met Set à 1 pour stocker l’information 1
 Table de vérité :
0 Reset
1 Set
Q 0
0 Q
0
Set Reset
0
0
1
0
Q
0
Q
1
0
 Chronogramme :
Set 1
0
t
Reset 1
0
t
Q 1
0
t
Q 1
0
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
IV. Les fonctions logiques
IV.3. La fonction mémoire à deux portes NI
 On met Set à 1 pour stocker l’information 1
 Table de vérité :
0 Reset
1 Set
Q 1
0 Q
Set Reset
0
0
1
0
Q
0
1
Q
1
0
 Chronogramme :
Set 1
0
t
Reset 1
0
t
Q 1
0
t
Q 1
0
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
IV. Les fonctions logiques
IV.3. La fonction mémoire à deux portes NI
 On met Set à 1 pour stocker l’information 1
 Lorsque Set revient à 0, Q reste à 1
0 Reset
0 Set
 Table de vérité :
Q 1
0 Q
Set Reset
0
0
1
0
0
0
Q
0
1
Q
1
0
0
 Chronogramme :
Set 1
0
t
Reset 1
0
t
Q 1
0
t
Q 1
0
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
IV. Les fonctions logiques
IV.3. La fonction mémoire à deux portes NI
 On met Set à 1 pour stocker l’information 1
 Lorsque Set revient à 0, Q reste à 1
0 Reset
0 Set
 Table de vérité :
Q 1
0 Q
Set Reset
0
0
1
0
0
0
Q
0
1
1
Q
1
0
0
 Chronogramme :
Set 1
0
t
Reset 1
0
t
Q 1
0
t
Q 1
0
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
IV. Les fonctions logiques
IV.3. La fonction mémoire à deux portes NI
 On met Reset à 1 pour stocker l’information 0
 Table de vérité :
1 Reset
0 Set
Q 1
0 Q
Set Reset
0
0
1
0
0
0
0
1
Q
0
1
1
Q
1
0
0
 Chronogramme :
Set 1
0
t
Reset 1
0
t
Q 1
0
t
Q 1
0
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
IV. Les fonctions logiques
IV.3. La fonction mémoire à deux portes NI
 On met Reset à 1 pour stocker l’information 0
 Table de vérité :
1 Reset
0 Set
Q 0
0 Q
Set Reset
0
0
1
0
0
0
0
1
Q
0
1
1
0
Q
1
0
0
 Chronogramme :
Set 1
0
t
Reset 1
0
t
Q 1
0
t
Q 1
0
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
IV. Les fonctions logiques
IV.3. La fonction mémoire à deux portes NI
 On met Reset à 1 pour stocker l’information 0
 Table de vérité :
1 Reset
0 Set
Q 0
1 Q
Set Reset
0
0
1
0
0
0
0
1
Q
0
1
1
0
Q
1
0
0
1
 Chronogramme :
Set 1
0
t
Reset 1
0
t
Q 1
0
t
Q 1
0
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
IV. Les fonctions logiques
IV.3. La fonction mémoire à deux portes NI
 On met Reset à 1 pour stocker l’information 0
 Lorsque Reset revient à 0, Q reste à 0
0 Reset
0 Set
 Table de vérité :
Q 0
1 Q
 Chronogramme :
Set Reset
0
0
1
0
0
0
0
1
0
0
Q
0
1
1
0
0
Q
1
0
0
1
1
Set 1
0
t
Reset 1
0
t
Q 1
0
t
Q 1
0
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
IV. Les fonctions logiques
IV.3. La fonction mémoire à deux portes NI
 On met Reset à 1 pour stocker l’information 0
 Lorsque Reset revient à 0, Q reste à 0
0 Reset
0 Set
 Table de vérité :
Q 0
1 Q
 Chronogramme :
Set Reset
0
0
1
0
0
0
0
1
0
0
Q
0
1
1
0
0
Q
1
0
0
1
1
Set 1
0
t
Reset 1
0
t
Q 1
0
t
Q 1
0
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
IV. Les fonctions logiques
IV.3. La fonction mémoire à deux portes NI
 Il existe un état interdit avec Set = Reset = 1
 Table de vérité :
1 Reset
1 Set
Q
Q
Set Reset
1
1
Q
Q
 Chronogramme :
Set 1
0
t
Reset 1
0
t
Q 1
0
t
Q 1
0
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
IV. Les fonctions logiques
IV.3. La fonction mémoire à deux portes NI
 Il existe un état interdit avec Set = Reset = 1
 Les sorties sont à 0
 Table de vérité :
1 Reset
1 Set
Q 0
0 Q
Set Reset
1
1
Q
0
Q
0
 Chronogramme :
Set 1
0
t
Reset 1
0
t
Q 1
0
t
Q 1
0
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
IV. Les fonctions logiques
IV.3. La fonction mémoire à deux portes NI
 Si les 2 entrées passent simultanément à 0 les sorties sont indéterminées
 Elles dépendent de la rapidité de chaque porte
0 Reset
0 Set
Q ?
? Q
 Table de vérité :
Set Reset
1
1
0
0
0
0
Q
0
1
Q
0
0
0
1
 Chronogramme :
Set 1
0
t
Reset 1
0
t
Q 1
0
t
Q 1
0
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
IV. Les fonctions logiques
IV.3. La fonction mémoire à deux portes NI
 Si les 2 entrées passent simultanément à 0 les sorties sont indéterminées
 Elles dépendent de la rapidité de chaque porte
0 Reset
0 Set
Q ?
? Q
 Table de vérité :
Set Reset
1
1
0
0
Q
0
?
Q
0
?
 Chronogramme :
Set 1
0
t
Reset 1
0
t
Q 1
0
t
Q 1
0
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
IV. Les fonctions logiques
IV.3. La fonction mémoire à deux portes NI
 Schéma électrique de cette mémoire :
24 V
6V
RB
R
RB
Set
R2
0V
Reset
Q
R1
R
Q
R2
R1
 Symbole logique de la mémoire RS (bascule RS) :
Set
Reset
Q
Set
Q
Reset
Q
Q
 Mémoire de type RAM (Random Acces Memory) qui s’apparente à la SRAM
(Static) : l’information disparaît si on éteint l’alimentation.
 Si le pont de base consomme 1 µ A (sous 30 V) et que l’on stocke 106 bits
alors la mémoire disperse au moins 30 W !
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
IV. Les fonctions logiques
IV.3. La fonction mémoire à deux portes NI
1971 : 256-bit TTL RAM (Fairchild)
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.1. Principe de fonctionnement
 L’amplificateur de classe A amplifie tout le signal d’entrée.
VDD
 On travaille dans la partie
IC = .IB
linéaire du transistor qui est
polarisé en statique à IB0 et IC0.
RC
IB
 Le courant IB oscille autour de
IB0 et donc IC oscille autour de IC0
IC
VS
VCE = VS
VE = VBE
avec IC = .IB.
 Sans signal d’entrée, l’ampli consomme IC0 : mauvais rendement (au
mieux 50 %).
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.1. Principe de fonctionnement
RC
VDD
RB
EG
IB
VBE
IC
VS
VCE
EG (V)
EGmax
EG0
EGmin
t
IB (A)
IB (A)
IBmax
IBmax
IB0
IB0
IBmin
0
IBmin
VBE (V)
t
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.1. Principe de fonctionnement
RC
VDD
RB
EG
IB
VBE
IC
VS
VCE
EG (V)
EGmax
EG0
EGmin
t
IB (A)
IB (A)
IBmax
IBmax
IB0
IB0
IBmin
0
IBmin
VBE (V)
t
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.1. Principe de fonctionnement
RC
VDD
RB
EG
IB
VBE
IC
VS
VCE
EG (V)
EGmax
EG0
EGmin
t
IB (A)
IB (A)
IBmax
IBmax
IB0
IB0
IBmin
0
IBmin
VBE (V)
t
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.1. Principe de fonctionnement
RC
VDD
RB
EG
IB
VBE
IC
VS
VCE
EG (V)
EGmax
EG0
EGmin
t
IB (A)
IB (A)
IBmax
IBmax
IB0
IB0
IBmin
0
IBmin
VBE (V)
t
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.1. Principe de fonctionnement
RC
VDD
RB
EG
IB
VBE
IC
VS
VCE
EG (V)
EGmax
EG0
EGmin
t
IB (A)
IB (A)
IBmax
IBmax
IB0
IB0
IBmin
0
IBmin
VBE (V)
t
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.1. Principe de fonctionnement
RC
VDD
RB
EG
IB
VBE
IC
VS
VCE
EG (V)
EGmax
EG0
EGmin
t
IB (A)
IB (A)
IBmax
IBmax
IB0
IB0
IBmin
0
IBmin
VBE (V)
t
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.1. Principe de fonctionnement
RC
VDD
RB
EG
IB
VS
IC
VCE
VBE
EG (V)
EGmax
EG0
EGmin
t
IB (A)
IB (A)
IBmax
IBmax
IB0
IB0
IBmin
0
IBmin
VBE (V)
IC (A)
IBmax
ICmax
IB0
IC0
ICmin
0
Pascal MASSON
IBmin
VCE (V)
t
IC (A)
ICmax
IC0
IC = .IB
ICmin
-Parcours des écoles d'ingénieurs Polytech (Peip)
t
Le transistor bipolaire
V. Amplification classe A
V.1. Principe de fonctionnement
RC
VDD
RB
EG
IB
VS
IC
VCE
VBE
EG (V)
EGmax
EG0
EGmin
t
IB (A)
IB (A)
IBmax
IBmax
IB0
IB0
IBmin
0
IBmin
VBE (V)
IC (A)
IBmax
ICmax
IB0
IC0
ICmin
0
Pascal MASSON
IBmin
VCE (V)
t
IC (A)
ICmax
IC0
ICmin
-Parcours des écoles d'ingénieurs Polytech (Peip)
t
Le transistor bipolaire
V. Amplification classe A
V.1. Principe de fonctionnement
RC
VDD
RB
EG
IB
VS
IC
VCE
VBE
EG (V)
EGmax
EG0
EGmin
t
IB (A)
IB (A)
IBmax
IBmax
IB0
IB0
IBmin
0
IBmin
VBE (V)
IC (A)
IBmax
ICmax
IB0
IC0
ICmin
0
Pascal MASSON
IBmin
VCE (V)
t
IC (A)
ICmax
IC0
ICmin
-Parcours des écoles d'ingénieurs Polytech (Peip)
t
Le transistor bipolaire
V. Amplification classe A
V.1. Principe de fonctionnement
RC
VDD
RB
EG
IB
VS
IC
VCE
VBE
EG (V)
EGmax
EG0
EGmin
t
IB (A)
IB (A)
IBmax
IBmax
IB0
IB0
IBmin
0
IBmin
VBE (V)
IC (A)
IBmax
ICmax
IB0
IC0
ICmin
0
Pascal MASSON
IBmin
VCE (V)
t
IC (A)
ICmax
IC0
ICmin
-Parcours des écoles d'ingénieurs Polytech (Peip)
t
Le transistor bipolaire
V. Amplification classe A
V.1. Principe de fonctionnement
RC
VDD
RB
EG
IB
VS
IC
VCE
VBE
EG (V)
EGmax
EG0
EGmin
t
IB (A)
IB (A)
IBmax
IBmax
IB0
IB0
IBmin
0
IBmin
VBE (V)
IC (A)
IBmax
ICmax
IB0
IC0
ICmin
0
Pascal MASSON
IBmin
VCE (V)
t
IC (A)
ICmax
IC0
ICmin
-Parcours des écoles d'ingénieurs Polytech (Peip)
t
Le transistor bipolaire
V. Amplification classe A
V.1. Principe de fonctionnement
RC
VDD
RB
EG
IB
VS
IC
VCE
VBE
EG (V)
EGmax
EG0
EGmin
t
IC (A)
IBmax
ICmax
IB0
IC0
ICmin
0
IBmin
IC (A)
ICmax
IC0
ICmin
t
VCE (V)
0
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.1. Principe de fonctionnement
RC
VDD
RB
EG
IB
VBE
IC
EG (V)
VS
VCE
EGmax
EG0
EGmin
IB (A)
IB (A)
t
IBmax
IB0
IBmin
0
VBE (V)
IBmax
IB0
t
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.1. Principe de fonctionnement
RC
VDD
RB
EG
IB
VS
IC
VCE
VBE
EG (V)
EGmax
EG0
EGmin
IC (A)
IC (A)
IBmax
ICmax
IC0
0
t
IB0
VCE (V)
ICmax
IC0
ICmin
t
0
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.1. Principe de fonctionnement
RC
VDD
RB
EG
IB
VBE
IC
VS
VCE
EG (V)
EGmax
EG0
EGmin
t
IB (A)
IBmax
IB (A)
IBmax
IB0
IB0
IBmin
0
IBmin
VBE (V)
t
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.1. Principe de fonctionnement
RC
VDD
RB
EG
IB
VS
IC
VCE
VBE
EG (V)
EGmax
EG0
EGmin
t
IBmax
IC (A)
ICmax
IC0
ICmin
0
IB0
IC (A)
IBmin
t
VCE (V)
0
t
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.2. Rappels : passe haut et passe bas
 Les gains VC/EG et VR/EG correspondent aux filtres passe bas et pas haut
respectivement.
 La fréquence de coupure des deux filtres est : FC = 1/(2RC).
 La notion de haute et basse fréquences se reporte à la valeur de FC
VC
C
EG
Pascal MASSON
R
VR
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.2. Rappels : passe haut et passe bas
 En basse fréquence VC = EG et VR = 0 : la capacité absorbe toutes les
variations de EG. Elle a le temps de se charger et de se décharger
1.5
C
EG
R
VR
Tensions
VC
F = 0,05 FC
EG
1.0
VR
0.5
VC
0.0
-0.5
-1.0
-1.5
0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
Temps
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
0.04
V. Amplification classe A
V.2. Rappels : passe haut et passe bas
 En basse fréquence VC = EG et VR = 0 : la capacité absorbe toutes les
variations de EG. Elle a le temps de se charger et de se décharger
1.5
C
EG
R
VR
Tensions
VC
F = 0,2 FC
EG
1.0
VR
0.5
VC
0.0
-0.5
-1.0
-1.5
0
0.002
0.004
0.006
0.008
Temps
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
0.01
V. Amplification classe A
V.2. Rappels : passe haut et passe bas
 En basse fréquence VC = EG et VR = 0 : la capacité absorbe toutes les
variations de EG. Elle a le temps de se charger et de se décharger
1.5
C
EG
R
VR
Tensions
VC
F = 0,5 FC
EG
1.0
VR
0.5
VC
0.0
-0.5
-1.0
-1.5
0
0.0005
0.001
0.0015
0.002
0.0025
0.003
0.0035
Temps
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
0.004
V. Amplification classe A
V.2. Rappels : passe haut et passe bas
 En basse fréquence VC = EG et VR = 0 : la capacité absorbe toutes les
variations de EG. Elle a le temps de se charger et de se décharger
1.5
C
EG
R
VR
Tensions
VC
F = FC
EG
1.0
VR
0.5
VC
0.0
-0.5
-1.0
-1.5
0
0.0005
0.001
0.0015
Temps
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
0.002
V. Amplification classe A
V.2. Rappels : passe haut et passe bas
 En basse fréquence VC = EG et VR = 0 : la capacité absorbe toutes les
variations de EG. Elle a le temps de se charger et de se décharger
1.5
C
EG
R
VR
Tensions
VC
F = 2.FC
EG
1.0
VR
0.5
VC
0.0
-0.5
-1.0
-1.5
0
0.0002
0.0004
0.0006
0.0008
Temps
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
0.001
V. Amplification classe A
V.2. Rappels : passe haut et passe bas
 En basse fréquence VC = EG et VR = 0 : la capacité absorbe toutes les
variations de EG. Elle a le temps de se charger et de se décharger
1.5
C
EG
R
VR
Tensions
VC
F = 5.FC
EG
1.0
VR
0.5
VC
0.0
-0.5
-1.0
-1.5
0
0.00005
0.0001
0.00015
0.0002
0.00025
0.0003
0.00035
Temps
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
0.0004
V. Amplification classe A
V.2. Rappels : passe haut et passe bas
 En basse fréquence VC = EG et VR = 0 : la capacité absorbe toutes les
variations de EG. Elle a le temps de se charger et de se décharger
 En haute fréquence VR = EG et VC = 0 : la capacité n’a pas le temps de se
charger et de se décharger et donc la tension ne varia pas à ses bornes. Toutes
les variations de EG se reportent aux bornes de la résistance.
1.5
C
EG
R
VR
Tensions
VC
F = 20.FC
EG
1.0
VR
0.5
VC
0.0
-0.5
-1.0
-1.5
0
0.00002
0.00004
0.00006
0.00008
Temps
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
0.0001
V. Amplification classe A
V.3. Eléments du montage
 Les résistances R1 et R2 constituent le pont de base : polarisation de la base
VDD
R1
RC
CL
C
VBE
Ve
Pascal MASSON
Vs
R2
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.3. Eléments du montage
 Les résistances R1 et R2 constituent le pont de base : polarisation de la base
 Le condensateur C ne laisse passer que les variations de Ve et non la
composante continue : évite de modifier la polarisation de la base.
VDD
R1
RC
CL
C
VBE
Ve
Pascal MASSON
Vs
R2
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.3. Eléments du montage
 Les résistances R1 et R2 constituent le pont de base : polarisation de la base
 Le condensateur C ne laisse passer que les variations de Ve et non la
composante continue : évite de modifier la polarisation de la base.
 CL est aussi un condensateur de
VDD
liaison qui permet à la charge RL
(résistance
d’entrée
du
R1
bloc
suivant) de ne pas modifier la
RC
CL
C
polarisation du transistor.
VBE
Ve
Pascal MASSON
Vs
R2
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.4. Point de repos du montage
 Le point de repos correspond aux valeurs des tensions et des courants
lorsqu’on ne considère que le régime statique (ne dépend pas du temps).
 C et CL se comportent comme des interrupteurs ouverts.
VDD
R1
RC
VBE
Ve
Pascal MASSON
Vs
R2
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.4. Point de repos du montage
 Le point de repos correspond aux valeurs des tensions et des courants
lorsqu’on ne considère que le régime statique (ne dépend pas du temps).
 C et CL se comportent comme des interrupteurs ouverts.
VDD
R1
RC
VBE
VCE
R2
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.4. Point de repos du montage
 Le point de repos correspond aux valeurs des tensions et des courants
lorsqu’on ne considère que le régime statique (ne dépend pas du temps).
 C et CL se comportent comme des interrupteurs ouverts.
 On calcul IB (ce qui donne immédiatement IC) en supposant que le transistor
est en régime linéaire
VDD
 On détermine alors la tension VCE
qui doit être supérieure à VCEsat
R1
RC
VBE
VCE
R2
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.5. Schéma en petit signal
 EG est à présent un signal alternatif d’amplitude suffisamment faible pour ne
pas bloquer et/ou saturer le transistor.
 Cette fois, les fréquences du signal EG sont suffisamment élevées pour ne pas
permettre aux capacités C et CL de se charger ou de se décharger. Elles se
comportent comme des interrupteurs fermés.
VDD
R1
Rg
RC
C
VBE
EG
Pascal MASSON
Ve
CL
Vs
R2
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.5. Schéma en petit signal
 Les variations de EG vont se propager le long du circuit, être amplifiée par le
transistor puis appliquées à la charge RL.
 Les paramètres importants d’un amplificateur sont : les résistances d’entrée
et de sortie, le gain en tension et les fréquences de coupure haute et basse
 Calculer ces paramètres peut être
long et on préfère utiliser le schéma
petit
signal
simplification
qui
est
mathématique
schéma réel.
VDD
une
R1
du
Rg
RC
C
VBE
EG
Pascal MASSON
Ve
CL
Vs
R2
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.5. Schéma en petit signal
 Pour pouvoir utiliser le schéma petit signal il faut que tous les éléments
aient un comportement linéaire.
 Dans ce schéma, c’est le transistor qui est non linéaire et, par exemple, les
variations de VBE doivent être suffisamment faibles pour considérer un seul VS
et surtout un seul RS.
VDD
R1
Rg
RC
C
VBE
EG
Pascal MASSON
Ve
CL
Vs
R2
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.5. Schéma en petit signal
 Pour construire ce schéma, on ne conserve que les éléments (résistances,
tensions, fils … et on ne conserve que les variations de tension et de courant.
 EG(t) = EG0 + eg(t) donc on ne conserve que eg(t)
 La variation de VDD est nulle, vdd(t) = 0, et il en va de même pour la masse
donc vmasse(t) = 0
 Donc d’un point de vu alternatif, les fils VDD et masse sont identiques.
 Une
tension
continue
équivalente à un court circuit
est
V1(t) = V10 + v1(t)
VS
V2(t) = V20 + v2(t) = V1(t)  VS
donc
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
V20 = V10  VS
v2(t) = v1(t)
Le transistor bipolaire
V. Amplification classe A
V.5. Schéma en petit signal
 Pour construire ce schéma, on ne conserve que les éléments (résistances,
tensions, fils … et on ne conserve que les variations de tension et de courant.
 EG(t) = EG0 + eg(t) donc on ne conserve que eg(t)
 La variation de VDD est nulle, vdd(t) = 0, et il en va de même pour la masse
donc vmasse(t) = 0
 Donc d’un point de vu alternatif, les fils VDD et masse sont identiques.
 Une
tension
continue
équivalente à un court circuit
est
V1(t) = V10 + v1(t)
VS
V2(t) = V20 + v2(t) = V1(t)  VS
donc
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
V20 = V10  VS
v2(t) = v1(t)
Le transistor bipolaire
V. Amplification classe A
V.5. Schéma en petit signal
R1
Rg
VDD
RC
CL
C
VBE
EG
Pascal MASSON
Ve
R2
-Parcours des écoles d'ingénieurs Polytech (Peip)
Vs
RL
Le transistor bipolaire
V. Amplification classe A
V.5. Schéma en petit signal
R1
Rg
EG
Pascal MASSON
Ve
VDD
RC
CL
C
.IB
R2
-Parcours des écoles d'ingénieurs Polytech (Peip)
Vs
RL
Le transistor bipolaire
V. Amplification classe A
V.5. Schéma en petit signal
R1
Rg
EG
Ve
VDD
RC
CL
C
.IB
R2
Vs
RL
VDD / masse
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.5. Schéma en petit signal
R1
Rg
EG
Ve
VDD
RC
CL
C
.IB
R2
Vs
RL
eg
VDD / masse
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.5. Schéma en petit signal
R1
Rg
EG
Ve
VDD
RC
CL
C
.IB
R2
Vs
RL
Rg
eg
VDD / masse
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.5. Schéma en petit signal
R1
Rg
Ve
EG
VDD
RC
CL
C
.IB
R2
Vs
RL
Rg
eg
R1
VDD / masse
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.5. Schéma en petit signal
R1
Rg
RC
CL
C
Ve
EG
VDD
.IB
R2
Vs
RL
Rg
eg
R1
R2
VDD / masse
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.5. Schéma en petit signal
R1
Rg
Ve
EG
VDD
RC
CL
C
.IB
R2
Vs
RL
Rg
eg
RB
VDD / masse
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.5. Schéma en petit signal
R1
Rg
Rg
eg
ib
RB
RC
CL
C
Ve
EG
VDD
.IB
R2
Vs
RL
B
vbe
VDD / masse
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.5. Schéma en petit signal
VDD
R1
Rg
Rg
eg
ib
RB
CL
C
Ve
EG
RC
vbe
.IB
R2
Vs
RL
B
hie
E
VDD / masse
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.5. Schéma en petit signal
VDD
R1
Rg
Rg
eg
ib
RB
CL
C
Ve
EG
RC
vbe
.IB
Vs
RL
R2
B
C
hie
hfe.ib
ic
vce
E
VDD / masse
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.5. Schéma en petit signal
VDD
R1
Rg
Rg
eg
ib
RB
CL
C
Ve
EG
RC
vbe
.IB
Vs
RL
R2
B
C
hie
hfe.ib
ic
vce
RC
E
VDD / masse
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.5. Schéma en petit signal
VDD
R1
Rg
Rg
eg
ib
RB
CL
C
Ve
EG
RC
vbe
.IB
Vs
RL
R2
B
C
hie
hfe.ib
ic
vce
RC
E
VDD / masse
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.5. Schéma en petit signal
 Il faut aussi ajouter deux éléments parasites donnés par la matrice hybride
du transistor.
ib
v be  hie.i b  h re .v ce
eg
ib
RB
vbe
bipolaire
vbe
ic  hfe .i b  h oe.v ce
Rg
ic
B
vce
C
hie
hre.vce
hfe.ib
1/hoe
ic
vce
RC
E
VDD / masse
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.5. Schéma en petit signal
 Il faut aussi ajouter deux éléments parasites donnés par la matrice hybride
du transistor.
ib
v be  hie.i b  h re .v ce
ic
bipolaire
vbe
ic  hfe .i b  h oe.v ce
vce
 Dans ce cours, nous négligerons toujours la tension hre.vce (par rapport à
hie.ib) et en fonction des cas nous négligerons aussi la résistance 1/hoe devant
les résistances branchées en parallèle.
Rg
eg
ib
RB
vbe
B
C
hie
hre.vce
hfe.ib
1/hoe
ic
vce
RC
E
VDD / masse
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.5. Schéma en petit signal
 Les 4 paramètres sont obtenus à partir du point de polarisation.
IC (A)
VCE0
hfe
hoe
IC0
IB0 0
IB (A)
VCE (V)
ce
VBE0
VBE (V)
hie
!
VCE0
hre
Les paramètres h
dépendent du point
de repos (ou point
de polarisation)
Pascal MASSON
 Détermination de hie
v
V
h ie  be
 BE
i b v 0
I B V  V
CE
CE 0
ce
 Détermination de hfe
i
h fe  c

i b v 0
 Détermination de hoe
i
h oe  c
v ce i  0
b
 Détermination de hoe
v
h re  be
v ce i  0
-Parcours des écoles d'ingénieurs Polytech (Peip)
b
Le transistor bipolaire
V. Amplification classe A
V.6. Paramètres : résistances et gains
R B .h ie
V
 Impédance d’entrée : R e  in  R B // h ie 
i in
R B  h ie
Re
Rg
eg
ib
iin
vin
RB
vbe
B
C
hie
hfe.ib
ic
vce
RC
E
VDD / masse
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.6. Paramètres : résistances et gains
 Pour l’impédance de sortie, on court-circuite eg donc ib devient nul ainsi que
hfe.ib et il reste :
Rs 
Vout
 RC
i out
Rs
Rg
eg
ib
RB
vbe
B
C
hie
hfe.ib
ic
vce
iout
RC vout
E
VDD / masse
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.6. Paramètres : résistances et gains
 Le gain en tension correspond au rapport entre la tension appliquée à la
charge (RL) et la tension appliquée par le générateur :
AV 
Vout Vce  ic.R L // RC
R // RC
R // RC


  L
 h fe L
Vin
Vbe
ib.RS
RS
h ie
 Sans charge (i.e. RL  ), le gain en tension devient le gain à vide :
A V0  A V
R
  C
R L 
RS
Rg
eg
ib
iin
vin
RB
vbe
B
C
hie
hfe.ib
ic
vce
RC vout
E
VDD / masse
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.6. Paramètres : résistances et gains
 Pour le gain « composite », il faut considérer eg et non vin :
A VG 
R B // RS 
R // RC 
Re
Vce Vbe Vce
  L



AV


eg
eg Vbe Rg  R B // RS 
R S  Rg  R e
Rg
eg
ib
iin
vin
RB
vbe
B
C
hie
hfe.ib
ic
vce
RC vout
E
VDD / masse
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.7. Capacité C d’entrée
 Si la fréquence du signal EG est trop faible, la capacité C a le temps de se
charger et de se décharger et la tension VBE ne varie pas.
 La variation de tension de EG se retrouve intégralement aux bornes de la
capacité
 Il
est
nécessaire
de
VDD
connaitre la fréquence de
coupure du filtre pour
R1
ajuster correctement la
Rg
valeur de C et ainsi
Pascal MASSON
VBE
EG
Ve
CL
C
laisser passer le signal à
amplifier
RC
Vs
R2
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.7. Capacité C d’entrée
 On ajoute la capacité dans le schéma petit signal et on déterminer le gain de
PH
l’amplificateur
A VC 
Vout Vbe Vce


Vin
Vin Vbe
Re
Re 
1
jC
AV 
1
1 j
1
R eC
AV 
H
A
0 V
1 j

 On voit clairement apparaître la fonction d’un filtre passe haut dont la
fréquence de coupure est :
FC 
Rg
eg
iin
vin
C
RB
ib
vbe
1
2R eC
B
  2F
C
hie
hfe.ib
ic
vce
RC vout
E
VDD / masse
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.7. Capacité C d’entrée
 Si F < FC alors le condensateur se comporte comme un interrupteur ouvert et
le signal n’est pas amplifié
VDD
R1
Rg
RC
CL
C
VBE
EG
Pascal MASSON
Ve
R2
-Parcours des écoles d'ingénieurs Polytech (Peip)
Vs
RL
Le transistor bipolaire
V. Amplification classe A
V.7. Capacité C d’entrée
 Si F < FC alors le condensateur se comporte comme un interrupteur ouvert et
le signal n’est pas amplifié
 Si F > FC alors le condensateur se comporte comme un court-circuit et le
signal est amplifié
VDD
R1
RC
CL
Rg
VBE
EG
Pascal MASSON
Ve
R2
-Parcours des écoles d'ingénieurs Polytech (Peip)
Vs
RL
Le transistor bipolaire
V. Amplification classe A
V.7. Capacité C d’entrée
 La voix humaine (et les autres sons) est constituée d’une somme de
sinusoïdes d’amplitudes et fréquences différentes :
Signal
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.7. Capacité C d’entrée
 Diagramme de bode en amplitude (échelle semi-log) :
A(db)
20
0
 20
 40
Signal
1
Pascal MASSON
103
106
-Parcours des écoles d'ingénieurs Polytech (Peip)
109 F (Hz)
Le transistor bipolaire
V. Amplification classe A
V.7. Capacité C d’entrée
 Diagramme de bode en amplitude (échelle semi-log) :
A(db)
C
20
C
0
 R // RC 

20 log . L
RS 





 R L // RC

1
20 log .

R
S
 FC  

1




F



 20
 40
Signal
1
Pascal MASSON
FC
103
106
-Parcours des écoles d'ingénieurs Polytech (Peip)
109 F (Hz)
Le transistor bipolaire
V. Amplification classe A
V.8. Résistance d’émetteur
 Si le transistor chauffe il risque de s’emballer thermiquement et d’être
détruit.
VDD
R1
C
RC
IP
VBE
Vin
Pascal MASSON
CL
Vout
R2
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.8. Résistance d’émetteur
 Si le transistor chauffe il risque de s’emballer thermiquement et d’être
détruit.
 La résistance RE évite l’emballement thermique du transistor :
T°
IB
VE
VBE
IB
VDD
R1
C
RC
CL
IP
VBE
Vin
Pascal MASSON
R2
-Parcours des écoles d'ingénieurs Polytech (Peip)
RE
VE
Vout
Le transistor bipolaire
RL
V. Amplification classe A
V.8. Résistance d’émetteur
v
.RC // R L
A VE  out  
v in
RS  R E 1  
 Gain en tension :
 Le gain a diminué avec l’introduction de la résistance RE.
A VE  100
300
 30
1000
Rg
ib
RB
eg
A VE  100
B
300
 9.9
1000  201  100 
C
hie
hfe.ib
vin
E
ic
RC
vout
RE
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.8. Résistance d’émetteur
 Pour revenir à la valeur initiale du gain (i.e. AV), on ajoute une capacité CE
en parallèle de RE. Cette capacité agit comme un passe bas.
 Si la fréquence est basse, CE agit comme un circuit ouvert, sinon elle est
équivalente à un court-circuit.
VDD
R1
C
RC
IP
VBE
Vin
Pascal MASSON
R2
CL
RE
-Parcours des écoles d'ingénieurs Polytech (Peip)
CE
VE
RL
Le transistor bipolaire
Vout
V. Amplification classe A
V.8. Résistance d’émetteur
 Il est nécessaire de déterminer la fréquence de transition entre court-circuit
et circuit ouvert.
 Pour cela, on représente le schéma en petit signal en faisant apparaître la
capacité CE.
Rg
ib
RB
eg
B
C
hie
vin
E
RE
Pascal MASSON
hfe.ib
CE
ic
RC
vout
ve
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.8. Résistance d’émetteur
 Pour déterminer la fréquence de coupure du filtre, on commence par définir
1
1
l’impédance équivalent à RE // CE :

 jCE
ZEq R E
 On détermine alors le gain :
1  Zeq
ve
1   
1  
AE 


RS
v in RS  Zeq 1   RS
 1  
 jR SCE  1  
Zeq
RE
Rg
ib
RB
eg
B
C
hie
vin
E
RE
Pascal MASSON
hfe.ib
CE
ic
RC
vout
ve
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.8. Résistance d’émetteur
 Ce gain fait apparaître la forme d’un passe bas :
AE 
ve
R E 1  

v in RS  R E 1  
1  j
FCE 
 Dont la fréquence de coupure est :
Rg
ib
RB
eg
B
RS  R E 1  
2RSR ECE
C
hie
vin
hfe.ib
E
RE
Pascal MASSON
1
RSR ECE
RS  R E 1  
CE
ic
RC
vout
ve
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.8. Résistance d’émetteur
 Diagramme de bode en amplitude (échelle semi-log) :
A(db)
20
0
 R // RC 

20 log . L
RS 

CE
CE
 20


R L // RC

20 log .

 RS  1  R E 
 40
Signal
1
Pascal MASSON
FCE
103
106
-Parcours des écoles d'ingénieurs Polytech (Peip)
109 F (Hz)
Le transistor bipolaire
V. Amplification classe A
V.8. Résistance d’émetteur
 Le gain de l’amplificateur s’écrit :
v
A VCE  out  
v in
Rg
RC // R L
RC // R L
 
RE
RE
RS  1  
jCE
jCER E  1
R S  1  
1
RE 
jCE
ib
RB
eg
B
C
hie
vin
E
RE
Pascal MASSON
hfe.ib
CE
ic
RC
vout
ve
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.8. Résistance d’émetteur
 Le gain de l’amplificateur s’écrit :
v
RC // R L
A VCE  out  
v in
RS  1  R E
1
jCERE  1
R ERS
jCE
1
RS  1  R E
FCE’
FCE
 Il existe 2 fréquences de coupure
FCE 
RS  R E 1  
2RSR ECE
1
2R ECE
et
FCE ' 
et
R // R L
A VCE       C
RS
 On retrouve aussi les 2 gains
A VCE   0  
Pascal MASSON
RC // R L
R S  R E
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
V. Amplification classe A
V.8. Résistance d’émetteur
 Diagramme de bode en amplitude (échelle semi-log) avec la résistance RE
devient :
A(db)
CE
20
 R // RC 

20 log . L
RS 

0
 20
CE


R L // RC

20 log .

 RS  1  R E 
 40
Signal
FCE’
Pascal MASSON
FCE
103
106
-Parcours des écoles d'ingénieurs Polytech (Peip)
109 F (Hz)
Le transistor bipolaire
V. Amplification classe A
V.9. Fréquences de coupure hautes
 La variation de la tension vbc implique une variation de la longueur de la
zone de charge d’espace (ZCE) de la diode Base-Collecteur
 La variation de la ZCE correspond à une variation de charge et donc la diode
est équivalente à une capacité notée CBC.
 Cette capacité fait un pont entre l’entrée et la sortie ce qui complique le
calcul du gain en tension
Rg
eg
ib
RB
vbe
B
C
CBC
hie
hfe.ib
ic
vce
RC
E
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RL
V. Amplification classe A
V.9. Fréquences de coupure hautes
 Nous considérons la capacité entre la base et le collecteur : CBE
 Elle peut être ramenée en entrée et en sortie du transistor avec le théorème
de MILLER :
Z1 
Z2 
1
j.C BC1.

1
j.C BC2 .

1
1
j.C BC . 1  A V
CBC1  CBC 1  AV   CBC
.
AV
j.C BC . 1  A V
1
C BC2  C BC
.
1  AV
 C BC
AV
Rg
eg
Pascal MASSON
RB
CBC1
hie
hfe.ib
-Parcours des écoles d'ingénieurs Polytech (Peip)
CBC2
RC
Le transistor bipolaire
RL
V. Amplification classe A
V.9. Fréquences de coupure hautes
v
Re
 Gain composite : A VG _ CBC  ce  A V
eg
Rg  R e
Re
Rg
eg
Pascal MASSON
Req
RB
hie
hfe.ib
-Parcours des écoles d'ingénieurs Polytech (Peip)
RC
Le transistor bipolaire
RL
V. Amplification classe A
V.9. Fréquences de coupure hautes
Re // CBC1 
v
h
 Gain composite : A VG _ CBC  ce   fe . R eq // CBC2
eg
h ie
Rg  R e // CBC1 


Re
Rg
eg
Pascal MASSON
Req
RB
CBC1
hie
hfe.ib
-Parcours des écoles d'ingénieurs Polytech (Peip)
CBC2
RC
Le transistor bipolaire
RL
V. Amplification classe A
V.9. Fréquences de coupure hautes
Re // CBC1 
v
h
 Gain composite : A VG _ CBC  ce   fe . R eq // CBC2
eg
h ie
Rg  R e // CBC1 


AVG
v ce
h fe R eq .R e
1
1
A



.
.
.
soit
VG _ CBC
eg
h ie Rg  R e 1  jCBC1 Rg // R e 1  jCBC2R eq


Gain aux fréquences moyennes
Rg
eg
Pascal MASSON
Req
RB
CBC1
hie
hfe.ib
-Parcours des écoles d'ingénieurs Polytech (Peip)
CBC2
RC
Le transistor bipolaire
RL
V. Amplification classe A
V.9. Fréquences de coupure hautes
Re // CBC1 
v
h
 Gain composite : A VG _ CBC  ce   fe . R eq // CBC2
eg
h ie
Rg  R e // CBC1 


AVG
v ce
h fe R eq .R e
1
1
A



.
.
.
soit
VG _ CBC
eg
h ie Rg  R e 1  jCBC1 Rg // R e 1  jCBC2R eq


Gain aux fréquences moyennes
 Il existe deux fréquences de coupure hautes avec FHF1 << FHF2 :
Fréquence de
1
coupure haute FHF1 
 FHF
2C BE1 R g // R e
de l’ampli
Rg

eg
Pascal MASSON
RB
CBC1

hie
hfe.ib
-Parcours des écoles d'ingénieurs Polytech (Peip)
CBC2
Req
RC
Le transistor bipolaire
RL
V. Amplification classe A
V.9. Fréquences de coupure hautes
Re // CBC1 
v
h
 Gain composite : A VG _ CBC  ce   fe . R eq // CBC2
eg
h ie
Rg  R e // CBC1 


AVG
v ce
h fe R eq .R e
1
1
A



.
.
.
soit
VG _ CBC
eg
h ie Rg  R e 1  jCBC1 Rg // R e 1  jCBC2R eq


Gain aux fréquences moyennes
 Il existe deux fréquences de coupure hautes avec FHF1 << FHF2 :
Fréquence de
1
1
coupure haute FHF1 
 FHF
FHF2 
2C BE1 R g // R e
2C BE2 R eq
de l’ampli
Rg

eg
Pascal MASSON
RB
CBC1

hie
hfe.ib
-Parcours des écoles d'ingénieurs Polytech (Peip)
CBC2
Req
RC
Le transistor bipolaire
RL
V. Amplification classe A
V.9. Fréquences de coupure hautes
 Diagramme de bode en amplitude (échelle semi-log) :
A(db)
20
 h
R eq .R e
fe

20 log 
.
 h ie R g  R e

0




 20 db/dec
 20
 40
 40 db/dec
Signal
1
Pascal MASSON
103
FHF1 106
-Parcours des écoles d'ingénieurs Polytech (Peip)
FHF2
109 F (Hz)
Le transistor bipolaire
VI. Multivibrateur astable Abraham BLOCH
VI.1. Présentation
VDD
 Circuit dont le schéma s’apparente à
celui de la mémoire RS et qui fournit
un signal carré.
t0
V
CE1
C1
R2
R1
C2
VDD
t
VBE1
0
0.6 V
t
VCE2
VDD
VBE2
0
t
0.6 V
t
Pascal MASSON
RC1
-Parcours des écoles d'ingénieurs Polytech (Peip)
T1
T2
Le transistor bipolaire
RC2
VI. Multivibrateur astable Abraham BLOCH
VI.1. Présentation
VDD
 Circuit dont le schéma s’apparente à
celui de la mémoire RS et qui fournit
un signal carré.
t0
V
CE1
VDD
C1
R2
R1
C2
T1
0.6 V
T2
0
t
VBE1
0
0.6 V
t
VCE2
VDD
VBE2
0
t
0.6 V
t
Pascal MASSON
RC1
 Instant t < t0
 T1 saturé : VCE1 = VCEsat = 0
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RC2
VI. Multivibrateur astable Abraham BLOCH
VI.1. Présentation
VDD
 Circuit dont le schéma s’apparente à
celui de la mémoire RS et qui fournit
un signal carré.
t0
V
CE1
R2
R1
C1
VDD
0.6 V
t
VCE2
VDD
t
0.6 V
t
C2
VC2
T1
t
VBE1
0
VBE2
0
RC1
0.6 V
T2
 Instant t < t0
 T1 saturé : VCE1 = VCEsat = 0
 T2 bloqué : VCE2 = VDD
 VBE2 < 0,6 V
 VC2 = VDD  0,6
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RC2
VDD
VI. Multivibrateur astable Abraham BLOCH
VI.1. Présentation
VDD
 Circuit dont le schéma s’apparente à
celui de la mémoire RS et qui fournit
un signal carré.
t0
V
CE1
VDD
VCE2
VDD
t
0.6 V
t
C2
VC2
T1
t
0.6 V
t
Pascal MASSON
R2
R1
C1
0
VBE1
0
VBE2
0
RC1
0.6 V
T2
 Instant t = t0
 C1 s’est chargée à travers R1
 VBE2 devient égale à 0,6 V
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RC2
VDD
VI. Multivibrateur astable Abraham BLOCH
VI.1. Présentation
VDD
 Circuit dont le schéma s’apparente à
celui de la mémoire RS et qui fournit
un signal carré.
t0
V
CE1
C2
VC2
t
T1 0.6  VDD T2
0.6 V
t
VCE2
VDD
Pascal MASSON
R2
R1
C1
VDD
VBE1
0
VBE2
0
RC1
t
0.6 V
t
RC2
0
 Instant t = t0
 T2 devient saturé : VCE2 = 0
 La charge de C2 impose la
tension VBE1 = 0,6  VDD
 T1 se bloque
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VI. Multivibrateur astable Abraham BLOCH
VI.1. Présentation
VDD
 Circuit dont le schéma s’apparente à
celui de la mémoire RS et qui fournit
un signal carré.
t0
V
CE1
RC1.C1
VDD
RC1
R2
R1
C1
VDD
RC2
0
0.6 V
T1 0.6  VDD
t
C2
T2
VBE1
0
0.6 V
t
VCE2
VDD
 C1 se charge à travers RC1 avec
t
0.6 V
t
faible
VBE2
0
Pascal MASSON
 Instant t = t0+
une constante de temps très
 VCE1 = VDD
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VI. Multivibrateur astable Abraham BLOCH
VI.1. Présentation
VDD
 Circuit dont le schéma s’apparente à
celui de la mémoire RS et qui fournit
un signal carré.
t0
V
CE1
RC1.C1
VBE1
0
VCE2
VBE2
0
Pascal MASSON
RC1
C2
0.6 V
t
RC2
0
VDD
T1
t
R2.C2
R2
R1
C1
T2
 Instant t > t0
VDD
 C2 se charge à travers R2 avec
t
0.6 V
t
grande que RC1.C1.
une constante de temps plus
 La tension VBE1 augmente
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VI. Multivibrateur astable Abraham BLOCH
VI.1. Présentation
VDD
 Circuit dont le schéma s’apparente à
celui de la mémoire RS et qui fournit
un signal carré.
t0
t1
V
CE1
RC1.C1
VBE1
0
C1
R2
R1
C2
T1
0.6 V
T2
VDD
t
R2.C2
0.6 V
t
VCE2
VDD
VBE2
0
t
0.6 V
t
Pascal MASSON
RC1
 Instant t = t1
 VBE1 = 0,6 V
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
RC2
VI. Multivibrateur astable Abraham BLOCH
VI.1. Présentation
VDD
 Circuit dont le schéma s’apparente à
celui de la mémoire RS et qui fournit
un signal carré.
t0
t1
V
CE1
RC1.C1
VBE1
0
VCE2
VBE2
0
Pascal MASSON
VDD
RC1
0
R2.C2
VDD
t
0.6 V
t
C2
RC2
VC1
T1 0.6  VDD T2
t
0.6 V
t
R2
R1
C1
 Instant t = t1
 T1 devient saturé : VCE1 = 0
 La charge de C1 impose la
tension VBE2 = 0,6  VDD
 T2 se bloque
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VI. Multivibrateur astable Abraham BLOCH
VI.1. Présentation
VDD
 Circuit dont le schéma s’apparente à
celui de la mémoire RS et qui fournit
un signal carré.
t0
t1
V
CE1
RC1.C1
VBE1
0
R2.C2
RC2.C2
Pascal MASSON
0.6 V
t
R2
R1
C1
0
C2
RC2
VDD
0.6 V
T1 0.6  VDD
t
VCE2
VBE2
0
VDD
RC1
T2
 Instant t = t1+
VDD
 C2 se charge à travers RC2 avec
t
0.6 V
t
faible
une constante de temps très
 VCE2 = VDD
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VI. Multivibrateur astable Abraham BLOCH
VI.1. Présentation
VDD
 Circuit dont le schéma s’apparente à
celui de la mémoire RS et qui fournit
un signal carré.
t0
t1
V
CE1
RC1.C1
VBE1
0
0.6 V
t
R2.C2
RC2.C2
Pascal MASSON
R1.C1
R2
R1
C1
C2
RC2
0
T1
t
VCE2
VBE2
0
VDD
RC1
T2
 Instant t > t1+
VDD
 C1 se charge à travers R1 avec
t
0.6 V
t
grande que RC2.C2.
une constante de temps plus
 La tension VBE2 augmente
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VI. Multivibrateur astable Abraham BLOCH
VI.1. Présentation
VDD
 Circuit dont le schéma s’apparente à
celui de la mémoire RS et qui fournit
un signal carré.
t0
t1
V
CE1
RC1.C1
VBE1
0
R2.C2
R1.C1
R2
R1
C2
RC2
VDD
0.6 V
t
RC2.C2
Pascal MASSON
C1
T1
t
VCE2
VBE2
0
RC1
VDD
T2
 Le signal carré est pris sur le
collecteur de T1 ou de T2
 La période du signal carré dépend
des valeurs de R1, R2, C1 et C2
t
0.6 V
 Il faut aussi RC1 << R1 et RC2 << R2
t
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VII. Amplification classe B
VII.1. Définition et principe de fonctionnement
 L’amplificateur de classe B n’amplifie que la
VDD
moitié du signal d’entrée.
 Il crée beaucoup de distorsion mais a un
RC
rendement bien meilleur que le classe A avec
en théorie 78.5 %.
IB
 Le point de repos se situe à la limite du
IC (A)
IC0
0
Pascal MASSON
VCE = VS
VE = VBE
blocage du transistor
ICmax
IC
VS
IC (A)
IBmax
IB0
VCE (V)
ICmax
IC0
-Parcours des écoles d'ingénieurs Polytech (Peip)
t
Le transistor bipolaire
VII. Amplification classe B
VII.2. Amplificateur push-pull
VDD
 Les deux transistors ont le même gain .
 Amplificateur de puissance et non de tension
NPN
IL
 Si VE = 0, les deux transistors sont bloqués
et VS = 0.
VE
PNP
RL VS
 VDD
VS (V) VE (V)
0.6
0
t
 0.6
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VII. Amplification classe B
VII.2. Amplificateur push-pull
VDD
 Les deux transistors ont le même gain .
 Amplificateur de puissance et non de tension
NPN
IL
 Si VE = 0, les deux transistors sont bloqués
et VS = 0.
VE
 Si VE > 0.6 V, le transistor NPN est en
PNP
régime linéaire et le PNP est bloqué :
VS = VE – 0.6.
RL VS
 VDD
VS (V) VE (V)
0.6
0
t
 0.6
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VII. Amplification classe B
VII.2. Amplificateur push-pull
VDD
 Les deux transistors ont le même gain .
 Amplificateur de puissance et non de tension
NPN
IL
 Si VE = 0, les deux transistors sont bloqués
et VS = 0.
VE
 Si VE > 0.6 V, le transistor NPN est en
PNP
régime linéaire et le PNP est bloqué :
VS = VE – 0.6.
 Si VE <  0.6 V, le transistor PNP est en
régime linéaire et le NPN est bloqué.
VS = VE + 0.6.
 Distorsion pour les faibles valeurs de VE.
 VDD
VS (V) VE (V)
0.6
0
t
 0.6
 Saturation de VS si |VE| > VDD.
Pascal MASSON
RL VS
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VII. Amplification classe B
VII.2. Amplificateur push-pull
VDD
 Les deux transistors ont le même gain .
 Amplificateur de puissance et non de tension
NPN
IL
 Si VE = 0, les deux transistors sont bloqués
et VS = 0.
VE
 Si VE > 0.6 V, le transistor NPN est en
régime linéaire et le PNP est bloqué :
PNP
RL VS
 VDD
VS = VE – 0.6.
 Si VE <  0.6 V, le transistor PNP est en
régime linéaire et le NPN est bloqué.
VS = VE + 0.6.
 Distorsion pour les faibles valeurs de VE.
 Saturation de VS si |VE| > VDD.
Pascal MASSON
VS (V)
VDD
0.6
0
t
 0.6
 VDD
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VII. Amplification classe B
VII.2. Amplificateur push-pull
VDD
 Les deux transistors ont le même gain .
 Amplificateur de puissance et non de tension
NPN
IL
 Si VE = 0, les deux transistors sont bloqués
et VS = 0.
VE
 Si VE > 0.6 V, le transistor NPN est en
régime linéaire et le PNP est bloqué :
 VDD
VS = VE – 0.6.
VS (V)
 Si VE <  0.6 V, le transistor PNP est en
VDD
régime linéaire et le NPN est bloqué.
VS = VE + 0.6.
RL VS
PNP
 VDD  0.6
 Distorsion pour les faibles valeurs de VE.
0.6
VDD VE (V)
 Saturation de VS si |VE| > VDD.
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
Le transistor bipolaire
VII. Amplification classe B
VDD
VII.2. Amplificateur push-pull
 Afin d’éviter la distorsion du signal, on place
un pont de base avec deux diodes polarisées
en directe (et passantes).
0.6 V
NPN
IL
VE
PNP
 L’amplificateur push-pull est utilisé comme
étage de sortie des générateurs de fonction et
RL VS
des amplificateurs audio.
 VDD
VS (V)
VDD
 VDD  0.6
0.6
Pascal MASSON
-Parcours des écoles d'ingénieurs Polytech (Peip)
VDD VE (V)
Le transistor bipolaire
Téléchargement