TRIGONOMÉTRIE 9
2. Trigonométrie
2. Trigonométrie
2.1. Utilité de la trigonométrie
Théodolite du 19ème siècle
Le problème de base de la trigonométrie est à peu près celui-ci :
Vous vous tenez sur la rive d'un fleuve large et vous voulez savoir par exemple la
distance d'un arbre situé de l'autre côté, désigné sur le schéma par la lettre C (pour
simplifier ignorons la 3ème dimension). Comment faire sans traverser réellement le
fleuve ?
La démarche habituelle consiste à planter deux poteaux aux points A et B, et avec un
décamètre ou une chaîne d'arpenteur et à mesurer la distance c qui les sépare (la ligne de
base).
Remplacez ensuite le poteau A par une lunette d'arpenteur (un théodolite) comme celui
ci-contre, munie d'un plateau divisé en 360 degrés permettant de repérer sa direction
(son azimut). En visant successivement l'arbre puis le poteau B, vous obtenez l'angle A
du triangle ABC par soustraction des chiffres lus sur le plateau d'azimut. A partir du
point B on mesure l'angle B de façon analogue. La longueur c de la ligne de base et les
deux angles A et B sont suffisantes pour tout connaître sur le triangle ABC, assez, par
exemple, pour construire un triangle de même taille et de même forme sur un terrain
identique.
La trigonométrie (en grec τριγον = triangle) était à l'origine l'art de préciser uniquement
par le calcul les informations absentes. Avec suffisamment d'informations, la
trigonométrie vous permet de calculer les dimensions et les angles d'un triangle
préalablement défini.
Pourquoi des triangles ? Parce que ce sont les figures de base qui permettent de
construire toutes les autres formes ayant des côtés rectilignes. Un carré, un pentagone ou
un polygone peuvent être divisés en triangles, en menant des lignes droites d'un angle à
tous les autres.
Didier Müller - LCP - 2014 Cahier Géométrie