Abrogation of Heat Shock Protein 70 Induction as a Strategy to Increase Antileukemia Activity of Heat Shock Protein 90

publicité
Research Article
Abrogation of Heat Shock Protein 70 Induction as a Strategy to
Increase Antileukemia Activity of Heat Shock Protein 90
Inhibitor 17-Allylamino-Demethoxy Geldanamycin
Fei Guo, Kathy Rocha, Purva Bali, Michael Pranpat, Warren Fiskus, Sandhya Boyapalle,
Sandhya Kumaraswamy, Maria Balasis, Benjamin Greedy, E. Simon M. Armitage,
Nicholas Lawrence, and Kapil Bhalla
Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
Abstract
17-Allylamino-demethoxy geldanamycin (17-AAG) inhibits the
chaperone association of heat shock protein 90 (hsp90) with
the heat shock factor-1 (HSF-1), which induces the mRNA and
protein levels of hsp70. Increased hsp70 levels inhibit death
receptor and mitochondria-initiated signaling for apoptosis.
Here, we show that ectopic overexpression of hsp70 in human
acute myelogenous leukemia HL-60 cells (HL-60/hsp70) and
high endogenous hsp70 levels in Bcr-Abl-expressing cultured
CML-BC K562 cells confers resistance to 17-AAG-induced
apoptosis. In HL-60/hsp70 cells, hsp70 was bound to Bax,
inhibited 17-AAG-mediated Bax conformation change and
mitochondrial localization, thereby inhibiting the mitochondria-initiated events of apoptosis. Treatment with 17-AAG
attenuated the levels of phospho-AKT, AKT, and c-Raf but
increased hsp70 levels to a similar extent in the control HL-60/
Neo and HL-60/hsp70 cells. Pretreatment with 17-AAG, which
induced hsp70, inhibited 1-B-D-arabinofuranosylcytosine or
etoposide-induced apoptosis in HL-60 cells. Stable transfection of a small interfering RNA (siRNA) to hsp70 completely abrogated the endogenous levels of hsp70 and blocked
17-AAG-mediated hsp70 induction, resulting in sensitizing
K562/siRNA-hsp70 cells to 17-AAG-induced apoptosis. This
was associated with decreased binding of Bax to hsp70 and
increased 17-AAG-induced Bax conformation change. 17-AAGmediated decline in the levels of AKT, c-Raf, and Bcr-Abl
was similar in K562 and K562/siRNA-hsp70 cells. Cotreatment
with KNK437, a benzylidine lactam inhibitor of hsp70 induction and thermotolerance, attenuated 17-AAG-mediated
hsp70 induction and increased 17-AAG-induced apoptosis and
loss of clonogenic survival of HL-60 cells. Collectively, these
data indicate that induction of hsp70 attenuates the apoptotic
effects of 17-AAG, and abrogation of hsp70 induction
significantly enhances the antileukemia activity of 17-AAG.
(Cancer Res 2005; 65(22): 10536-44)
Introduction
A number of leukemia associated, newly synthesized, or stressdenatured client proteins, including Bcr-Abl, c-Raf, AKT, c-KIT,
and FLT-3, require interaction with heat shock protein 90 (hsp90)
Requests for reprints: Kapil Bhalla, Interdisciplinary Oncology Program, Moffitt
Cancer Center and Research Institute, University of South Florida, 12902 Magnolia
Drive, MRC 3 East, Room 3056, Tampa, FL 33612. Phone: 813-903-6861; Fax: 813-9036817; E-mail: [email protected].
I2005 American Association for Cancer Research.
doi:10.1158/0008-5472.CAN-05-1799
Cancer Res 2005; 65: (22). November 15, 2005
to maintain a mature, stable, and functional conformation (1, 2).
Hsp90 is an ATP-dependent molecular chaperone, which binds and
releases client proteins, driven by ATP binding and hydrolysis (3).
ATP/ADP binding to the hydrophobic NH2 terminus pocket alters
the conformation of hsp90, resulting in its interaction with the
cochaperone complex that protects or stabilizes the client proteins,
or with an alternative subset of cochaperones that directs the
misfolded proteins to a covalent linkage with polyubiquitin and
subsequent degradation by the 26S proteasome (1–4). Benzoquinone ansamycin antibiotic geldanamycin and its less toxic analogue 17-allylamino-demethoxy geldanamycin (17-AAG) directly
bind to the ATP/ADP binding pocket, thereby replacing the
nucleotide and inhibiting hsp90 function as a molecular chaperone
for the client proteins (5). By blocking ATP binding to hsp90, 17AAG stabilizes the hsp90 conformation that recruits hsp70-based
cochaperone complex associated with the misfolded client proteins (1, 2, 6). This results in the ubiquitin-dependent proteasomal
degradation of the client proteins (1, 2).
Recent studies from our laboratory have shown that the
antiapoptotic effects of Bcr-Abl in acute leukemia cells are partially
mediated by increased expression of hsp70 (7). Hsp70 is also an
ATP-dependent molecular chaperone, which is induced by cellular
stress due to misfolded and denatured proteins (8, 9). In normal
nontransformed cells, the expression of hsp70 is low and largely
stress inducible (8, 9). However, hsp70 is abundantly expressed in
most cancer cells (8, 9). Hsp70 has been shown to play an active
role in oncogenic transformation, and turning off the hsp70
expression was shown to reverse the transformed phenotype of
Rat-1 fibroblasts (10–12). Ectopic overexpression or induced
endogenous levels of hsp70 potently inhibits apoptosis (9, 13, 14).
Several reports have documented that hsp70 inhibits the mitochondrial pathway of apoptosis by blocking Apaf-1-mediated
activation of caspase-9 and caspase-3, as well as by repressing
the activity of caspase-3 (15–17). Additionally, hsp70 can also
inhibit caspase-independent apoptosis by directly interacting with
AIF, thereby preventing nuclear import and DNA fragmentation
by AIF (18, 19). Conversely, hsp70 depletion by antisense oligonucleotides or ectopic transfection and expression of a fragment of
hsp70 DNA in the antisense orientation has been shown to induce
apoptosis (7, 20, 21).
Heat-damaged proteins, reactive oxygen species, or oncogenic
stress is known to induce hsp70 levels (8, 9). This is mediated
through the transcriptional activity of the heat shock factor-1
(HSF-1; refs. 8, 9). Stress-induced activation of HSF-1 involves
phosphorylation, trimerization, nuclear localization, and binding of
HSF-1 to the heat shock elements (HSE) in the promoter of the
hsp70 gene, resulting in induction of hsp70 levels (9, 22, 23). Hsp90
binds and blocks the activation of HSF-1 (22). During stress
10536
www.aacrjournals.org
Downloaded from cancerres.aacrjournals.org on July 8, 2017. © 2005 American Association for Cancer
Research.
hsp70 Induction by hsp90 Inhibitors
response, denatured proteins bind hsp90 and displace HSF-1 from
hsp90, allowing nuclear localization and activity of HSF-1, resulting
in up-regulation of hsp70 levels (9, 22, 23). KNK437 is a novel benzylidine lactam compound, which is known to inhibit the development of thermotolerance by inhibiting the induction of heat
shock proteins, including hsp70 (24, 25). Treatment with 17-AAG
disrupts the association between hsp90 and HSF-1, thereby
promoting nuclear localization, HSE binding, and activity of
HSF-1, resulting in induction of hsp70 levels (22, 23, 26). 17-AAG
was shown to induce hsp70 in the transformed fibroblasts derived
from mice with wild-type HSF-1 but not from the HSF-1 knockout
mice (26). Indeed, the hsf-1 / fibroblasts were significantly more
sensitive than hsf-1+/+ fibroblasts to 17-AAG-mediated cytotoxic
effect. Therefore, the question arises whether 17-AAG-induced
hsp70 attenuates the apoptotic effect of 17-AAG in human
leukemia cells, and whether pretreatment with 17-AAG, through
induction of hsp70, would inhibit apoptosis induced by conventional antileukemia agents. In the present studies, we examined
these issues, as well as determined whether abrogation of hsp70
induction by small interfering RNA (siRNA) to hsp70 or by cotreatment with KNK437 would sensitize human leukemia cells to
17-AAG and other antileukemia agents.
Materials and Methods
Reagents and antibodies. 17-AAG was a gift from Kosan Bioscience
(South San Francisco, CA; ref. 27). KNK437 was a gift from Kaneka Corp.
(Takasago, Japan). Etoposide and 1-h-D-arabinofuranosylcytosine (ara-C)
were purchased from Sigma Chemical Co. (St. Louis, MO) and prepared as a
10 mmol/L stock solution in sterile PBS and diluted in RPMI 1640 before
use. Anti-hsp70, HSF-1, and anti-hsp90 antibodies were purchased from
Stressgen Biotechnologies Corp. (Victoria, British Columbia, Canada).
Hsp70 promoter/h-galactosidase (h-gal) reporter construct-containing
vector p173OR was also purchased from Stressgen Biotechnologies. The
monoclonal anti-Abl and polyclonal anti-Bax antibody were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA). Polyclonal anti-poly(ADPribose) polymerase (PARP) was purchased from Cell Signaling Technology
(Beverly, MA). Anti-phospho-AKT (p-AKT), c-Raf, and anti-AKT antibodies
were procured, as previously described (28).
Cultured cells. Human chronic myelogenous leukemia blast crisis K562
and acute myelogenous leukemia HL-60 cells were maintained in culture as
previously described (29). Cells were passaged as previously reported (29).
Logarithmically growing cells were used for the studies described below.
Creation and culture of HL-60/hsp70 and K562/hsp70AS cells.
pcDNA3-hsp70 plasmid was kindly provided by Dr. Richard Morimoto
(Northwestern University, Urbana, IL; ref. 30). This construct was stably
transfected into HL-60 cells, and the stable clones were selected, subcloned
by limiting dilution, and maintained in 500 Ag/mL of G418 (7). To create the
pcDNA3-hsp70AS construct, pcDNA3-hsp70 was used as a template for
PCR amplification using forward primer containing XhoI restriction site
(5V-CCCTCGAGAGGATGCGGGTGTGATCG-3V) and a reverse primer containing HindIII restriction site (5V-CCCAAGCTTCTTGGCGTCGCGCAGCAGAGA-3V; ref. 20). The PCR product was digested with XhoI and HindIII and
subcloned into pcDNA3.1 vector. K562 cells were stably transfected with
the pcDNA3-hsp70AS construct and maintained in 500 Ag/mL of G418.
Creation and culture of K562/siRNA-hsp70 cells. K562 cells were
transfected by Amaxa nucleofector, using T-16 protocol of the manufacturer
(Gaithersburg, MD), with the pRNATin-H1.2/Neo vector containing hsp70
siRNA GAAGGACGAGTTTGAGCACAA or the control sequence (K562/
control cells; Genscript, Piscataway, NJ; refs. 7, 31). Stable clones were
selected and maintained in 500 Ag/mL G418 selection medium.
Western analyses of proteins. Western analyses of Bcr-Abl, pAKT, AKT,
c-Raf, Caspase-3, PARP, hsp70, hsp90 and HSF-1, and h-actin were done
using specific antisera or monoclonal antibodies according to previously
reported protocols (29, 32).
www.aacrjournals.org
Bax conformation change analysis. Cells were lysed in 3-[(3cholamidopropyl)dimethylammonio]-1-propanesulfonic acid lysis buffer,
containing 150 mmol/L NaCl, 10 mmol/L HEPES (pH 7.4), and 1% 3-[(3cholamidopropyl)dimethylammonio]-1-propanesulfonic acid] containing
protease inhibitors. Immunoprecipitation is done in lysis buffer by using
500 Ag of total cell lysate and 2.5 Ag of anti-Bax 6A7 monoclonal antibody
(Sigma Chemical). The resulting immune complexes were subjected to
immunoblotting analysis with anti-Bax polyclonal antibody, as described
previously (32, 33).
Apoptosis assessment by Annexin V staining. After drug treatments,
percentage apoptotic cells (either stained only with Annexin V or with both
Annexin V and propidium iodide) were estimated by flow cytometry, as
previously described (28, 29).
Colony growth inhibition. Following treatment with the designated
concentrations of 17-AAG and/or KNK437, untreated and drug-treated cells
were washed in RPMI 1640. Approximately 200 cells treated under each
condition were resuspended in 100 AL of RPMI 1640 containing 10% fetal
bovine serum and then plated in duplicate wells in a 12-well plate
containing 1.0 mL of Methocult medium (Stem Cell Technologies, Inc.,
Vancouver, Canada) per well, according to the manufacturer’s protocol.
The plates were placed in an incubator at 37jC with 5% CO2 for 10 days.
Following this incubation, colonies consisting of z50 cells, in each well,
were counted by an inverted microscope and % colony growth inhibition
compared with the untreated control cells were calculated.
Morphology of apoptotic cells. After drug treatment, 50 103 cells
were washed and resuspended in 1 PBS (pH 7.4). Cytospin preparations of
the cell suspensions were fixed and stained with Wright stain. Cell
morphology was determined and the percentage of apoptotic cells was
calculated for each experiment, as described previously (29).
Nuclear and S100 fraction isolation. Cells were lysed in hypotonic
buffer containing 20 mmol/L HEPES (pH 7.9), 1 mmol/L EDTA, 1 mmol/L
EGTA, 20 mmol/L NaF, 1 mmol/L Na4P2O7, 1 mmol/L DTT, and 0.5 mmol/L
phenylmethylsulfonyl fluoride (PMSF), 0.5 Ag/mL leupeptin, 50 Ag/mL antipain, and 2 Ag/mL aprotinin. Cell lysates were left on ice for 10 minutes
and then centrifuged at 2,000 g for 30 seconds. Pellets were resuspended
in hypotonic buffer containing 0.05% NP40. The nuclei were released and
pelleted by centrifugation at 2,000 g for 2 minutes. Nuclei were resuspended in hypotonic buffer C, containing 20 mmol/L HEPES (pH 7.9),
420 NaCl, 20% glycerol, 1 mmol/L EDTA, 1 mmol/L EGTA, 20 mmol/L NaF,
1 mmol/L Na4P2O7, 1 mmol/L DTT, and 0.5 mmol/L PMSF, 0.5 Ag/mL
leupeptin, 50 Ag/mL antipain, and 2 Ag/mL aprotinin, mixed well, and
rotating at 4jC for 30 minutes. Finally, nuclear extracts were collected as
supernatant after centrifugation at 12,000 g at 4jC for 30 minutes, as
previously described (7, 32). S100 fractions were collected as previously
described (7, 32).
Heat shock factor-1 immunofluorescence. Approximately 50,000 cells
were cytospun, immediately fixed with 4% paraformaldehyde, and kept
overnight at 4jC. The cells were then permeabilized in 0.5% Triton X-100/
PBS for 15 minutes. After preblocking with 3% bovine serum albumin/PBS,
cells were incubated with anti-HSF-1 primary antibody (Stressgen, British
Columbia, Canada; 1:100) at room temperature for 1.5 hours followed by
three washes in PBS and incubated with FITC-conjugated secondary
antibody (1:200) at room temperature for 30 minutes. Cells were washed in
PBS before nuclear staining with 0.1 Ag/mL of 4V,6-diamino-2-phenylindole
and analysis by fluorescence microscopy, as described previously (34).
B-Galactosidase reporter assay. Cells were transfected with hsp70
promoter/h-gal reporter vector p1730R by nucleofection (Amaxa) and
incubated at 37jC for 36 hours. Cells were then pretreated with KNK437
(400 Amol/L) for 1 hour followed by KNK437 plus 17 AAG (5 Amol/L) for
6 hours. Alternatively, cells were heat shocked (42jC) for 1 hour followed
by recovery at 37jC for 5 hours. Subsequently, cells were harvested and
total cell lysates obtained. Ten micrograms of the protein were incubated
with chlorophenolred-h-D-galactopyranoside (Roche, Indianapolis, IN) for
4 hours and analyzed using a microplate reader at 570 nm.
Statistical analysis. Significant differences between values obtained in a
population of leukemia cells treated with different experimental conditions
were determined using the Student’s t test.
10537
Cancer Res 2005; 65: (22). November 15, 2005
Downloaded from cancerres.aacrjournals.org on July 8, 2017. © 2005 American Association for Cancer
Research.
Cancer Research
Results
Overexpression of heat shock protein 70 confers resistance
against 17-allylamino-demethoxy geldanamycin–induced
apoptosis of acute leukemia cells. First, we compared the
apoptotic effects of 17-AAG in the control (HL-60/Neo) versus the
HL-60/hsp70 cells with ectopic overexpression of hsp70. As shown in
Fig. 1A, treatment with 0.5, 2.0, or 5.0 Amol/L of 17-AAG induced
significantly less apoptosis in HL-60/hsp70 compared with HL-60/
Neo cells. This was associated with reduced processing of PARP
in HL-60/hsp70 cells (Fig. 1C). However, exposure to 17-AAG
Figure 1. Hsp70 confers resistance against 17-AAG-induced apoptosis in
HL-60 cells. A, HL-60/Neo and HL-60/hsp70 cells were treated with 17-AAG at
indicated concentrations for 48 hours. Following this treatment, the percentage
of apoptotic cells was determined by Annexin V staining and flow cytometry.
Points, mean of three experiments; bars, FSE. B, HL-60/Neo and HL-60/hsp70
cells were treated with 17-AAG at indicated concentrations for 24 hours.
Following this treatment, total cell lysates were immunoblotted with anti-p-AKT,
AKT, or anti-c-Raf antibody. h-Actin levels were used as a loading control.
C, HL-60/Neo and HL-60/hsp70 cells were treated with 17-AAG at indicated
concentrations for 24 hours. Following this treatment, total cell lysates were
immunoblotted with anti-hsp70, hsp90, and anti-PARP antibodies. h-Actin levels
were used as a loading control.
Cancer Res 2005; 65: (22). November 15, 2005
depleted p-AKT, AKT, and c-Raf levels in both cell types, with
slightly greater inhibition of p-AKT and AKT levels in HL-60/
hsp70 cells (Fig. 1B). A more pronounced effect noted on p-AKT
than AKT levels may be due to increased activity of the protein
phosphatase 1 (PP1) induced by treatment with 17-AAG (35).
17-AAG also induced the expression of hsp70, with only a slight
increase in hsp90 levels, in both HL-60/Neo and HL-60/hsp70 cells
(Fig. 1C).
Hsp70 inhibits 17-allylamino-demethoxy geldanamycin–
induced Bax conformation change and localization to the
mitochondria. In unperturbed cells the multi-Bcl-2 homology
domain-containing proapoptotic molecule Bax is predominantly
localized in the cytosol (36). Following exposure to an apoptotic
stimulus, Bax undergoes a conformational change, detected by
the 6A7 antibody, leading to exposure of its NH2 and COOH termini and localization to the mitochondria (33, 37). This results in
mitochondrial permeabilization and release of the pro-death
molecules cytochrome c, Smac, Omi, and AIF (27, 33, 38). Compared with HL-60/Neo, in HL-60/hsp70 cells, more hsp70 could
be coimmunoprecipitated with intracellular Bax, with or without treatment with 17-AAG (Fig. 2A). These results are consistent
with a recent report, where hsp70 was shown to inhibit endoplasmic reticulum stress-induced apoptosis by binding to Bax
and preventing its translocation to the mitochondria (39). A
dose-dependent increase in 17-AAG-mediated Bax conformation
change in HL-60/Neo cells was observed, which was markedly
inhibited in HL-60/hsp70 cells (Fig. 2B). Consistent with the
reduced 17-AAG-induced Bax conformation change, 17-AAG also
did not attenuate Bax levels in the cytosolic S100 fraction or
increased Bax levels in the mitochondria that are present in the
heavy membrane fraction of HL-60/hsp70 cells, as was seen in
HL-60/Neo cells (Fig. 2C).
Abrogation of heat shock protein 70 induction sensitizes
17-allylamino-demethoxy geldanamycin-induced apoptosis.
We had previously reported that Bcr-Abl-expressing chronic
myelogenous leukemia cells (e.g., K562 cells) possess markedly
higher expression of hsp70 but not hsp90 (7). The direct role of
hsp70 in mediating resistance to apoptosis was determined in
K562 cells stably transfected with the siRNA to hsp70 (K562/siRNAhsp70), or in K562 cells with stable transfection of the cDNA of
hsp70 in the reversed orientation (K562/hsp70AS cells). Figure 3A
shows that, compared with the control K562, untreated K562/
siRNA-hsp70 cells do not express hsp70. Notably, treatment with
17-AAG induced marked induction of hsp70 levels in the control
K562 but not in K562/siRNA-hsp70 cells. Concomitantly, exposure
to 17-AAG induced significantly more Bax conformation change
in K562/siRNA-hsp70 versus the control K562 cells (Fig. 3A). Consistent with this, compared with K562/control, K562/siRNA-hsp70
cells were more sensitive to 17-AAG-induced apoptosis (Fig. 3B).
Despite this, treatment with 17-AAG caused similar decline in the
levels of Bcr-Abl, AKT, and c-Raf levels in both cell types (Fig. 3C).
These data indicate that induction of hsp70 by 17-AAG inhibits
Bax-mediated signaling for apoptosis induced by 17-AAG, without
abrogating 17-AAG-mediated depletion of hsp90 client proteins
c-Raf, AKT, and Bcr-Abl in K562/control cells. Treatment with
17-AAG also induced hsp90 but failed to induce hsp70 in K562/
hsp70AS cells (Fig. 4A). Consequently, as in K562/siRNA-hsp70
cells, the sensitivity to 17-AAG-induced apoptosis was markedly
restored in K562/hsp70AS cells (Fig. 4B). There was no significant
difference in Bcr-Abl, c-Raf, p-AKT, or AKT levels in K562/hsp70AS
versus K562/control cells (data not shown).
10538
www.aacrjournals.org
Downloaded from cancerres.aacrjournals.org on July 8, 2017. © 2005 American Association for Cancer
Research.
hsp70 Induction by hsp90 Inhibitors
Figure 2. Hsp70 binds to Bax and inhibits the conformational change and
translocation of Bax to the mitochondria. A, HL-60/Neo and HL-60/hsp70 cells
were treated with 17-AAG for 24 hours. Following this treatment, the cell lysates
were immunoprecipitated with anti-Bax antibody and immunoblotted with either
anti-hsp70 or anti-Bax antibody. B, HL-60/Neo and HL-60/hsp70 cells were
treated with 17-AAG at indicated concentrations for 24 hours. Following this
treatment, cell lysates were first immunoprecipitated with the 6A7 antibody that
detects the conformationally changed Bax and immunoblotted with polyclonal
anti-Bax antibody. C, HL-60/Neo and HL-60/hsp70 cells were treated with
17-AAG at indicated concentrations for 24 hours. Following this treatment, the
cytosolic (S100) and heavy membrane fractions (HMF ) were separated and
immunoblotted with anti-Bax antibody. h-Actin levels were used as a loading
control.
Pretreatment with 17-allylamino-demethoxy geldanamycin
induces heat shock protein 70 and confers resistance to
apoptosis due to antileukemia agents. We next determined the
sequence-dependent effects of cotreatment with 17-AAG on the
cytotoxic effects of etoposide (1.0 Amol/L) or ara-C (1.0 Amol/L;
data not shown) on human acute myelogenous leukemia HL-60
cells. Whereas exposure to etoposide had no effect, treatment with
0.5 Amol/L of 17-AAG for 24 hours induced hsp70 levels in HL-60
cells, which were unaffected by exposure to etoposide before or
after 17-AAG treatment (Fig. 5A). Similar effects of ara-C on hsp70
induction were observed (data not shown). Concomitantly,
apoptosis following sequential treatment with etoposide followed
by 17-AAG (each for 24 hours) was significantly more than the
sequential treatment with 17-AAG followed by etoposide, or following treatment with either drug alone for 24 hours followed by
culture of the cells in the drug-free medium for 24 hours (P < 0.05;
Fig. 5B). A similar sequence-dependent effect of 17-AAG was also
observed with ara-C (data not shown). These data suggest that
induction of hsp70 levels by 17-AAG pretreatment may confer
www.aacrjournals.org
Figure 3. Ectopic expression of siRNA-hsp70 depletes hsp70 levels and
sensitizes cells to 17-AAG-induced apoptosis. A, control K562 and
K562/siRNA-hsp70 cells were treated with 17-AAG for 24 hours. Following this
treatment, the cell lysates were immunoprecipitated with anti-Bax antibody and
immunoblotted with either hsp70 or Bax antibodies. Alternatively, the cell lysates
were immunoprecipitated with 6A7 antibody and immunoblotted with anti-Bax
antibodies. B, control K562 and K562/siRNA-hsp70 cells, created by stably
expressing pRNATin-H1.2/Neo vector containing hsp70 siRNA sequence, were
treated with the indicated concentrations of 17-AAG for 48 hours. Following
these treatments, the percentage of apoptotic cells was determined by Annexin V
staining and flow cytometry. Points, mean of three experiments; bars, FSE.
C, following treatment of the control K562 and K562/siRNA-hsp70 cells with the
indicated concentrations of 17AAG for 24 hours, Western analyses of the
expressions of Bcr-Abl, AKT, and c-Raf were done using specific antibodies.
h-Actin levels were used as a loading control.
10539
Cancer Res 2005; 65: (22). November 15, 2005
Downloaded from cancerres.aacrjournals.org on July 8, 2017. © 2005 American Association for Cancer
Research.
Cancer Research
(P < 0.05; Fig. 6D). We next determined the effect of KNK437 on
17-AAG-induced hsp70 and apoptosis. HL-60 cells were pretreated
with KNK37 (100 or 400 Amol/L) for 1 hour and then cotreated
with 17-AAG and KNK437 for 24 hours. Figure 7A shows that pretreatment and cotreatment with KNK437 inhibited 17-AAGmediated hsp70 induction in HL-60 cells. Compared with treatment
with KNK437 (100 or 400 Amol/L) or 17-AAG (0.5 or 2.0 Amol/L)
alone, each of the combinations of treatments with KNK437 and
17-AAG, as indicated, induced significantly more apoptosis of
HL-60 cells (P < 0.05; Fig. 7B). Notably, cotreatment with KNK437
and 17-AAG also significantly increased the loss of clonogenic
survival of HL-60 cells compared with the treatment with either
agent alone (P < 0.01; Fig. 7C).
Discussion
Previous reports have clearly established that stress-induced
ectopic or endogenous expression of hsp70 exerts an antiapoptotic
effect upstream and downstream of the mitochondria and inhibits
apoptosis due to a variety of antileukemia agents (13–17, 20, 21).
Figure 4. Ectopic expression of cDNA in the reverse orientation depletes
hsp70 levels and sensitizes CML-BC cells to 17-AAG-induced apoptosis.
A, K562 and K562/hsp70 AS cells were treated with 17-AAG at indicated
concentrations for 24 hours. Following these treatments, total cell lysates were
immunoblotted with hsp70 and hsp90 antibodies. h-Actin levels were used
as a loading control. B, control K562 and K562/hsp70 AS cells were treated
with the indicated concentrations of 17-AAG for 48 hours. Following these
treatments, the percentages of apoptotic cells were determined by Annexin V
staining and flow cytometry. Points, mean of three experiments; bars, FSE.
resistance to apoptosis secondary to a subsequent treatment with
etoposide or ara-C.
Cotreatment with KNK437 inhibits 17-allylamino-demethoxy
geldanamycin mediated heat shock protein 70 induction but
enhances 17-allylamino-demethoxy geldanamycin-induced
apoptosis. Previous reports have indicated that the induction of
hsp70 expression is dependent on the phosphorylation, oligomerization, nuclear localization, and binding of HSF-1 to the HSEs
present upstream of the hsp70 promoter (8, 9, 22, 23, 26). Because
KNK437 pretreatment has been shown to inhibit the induction
of the mRNA and protein levels of hsp70 following heat shock
(24, 25), we determined the mechanism by which KNK437 inhibits
17-AAG-mediated hsp70 induction, as well as evaluated the effect of
cotreatment with KNK437 on 17-AAG-induced apoptosis. Figure 6A
shows that treatment with KNK437 did not inhibit the phosphorylation of HSF-1 in K562 cells, based on the absence of any inhibitory effect on the slower migrating band on the immunoblot of
HSF-1, which is abolished by cotreatment with PP1 (Calbiochem,
San Diego, CA; data not shown). Pretreatment for 1 hour followed
by cotreatment with KNK437 did not inhibit 17-AAG-mediated
increase in HSF-1 in the nuclear and the concomitant decrease in
the cytosolic S100 fraction of K562 cells (Fig. 6B). Using immunofluorescence microscopy, we were able to confirm that KNK437
did not inhibit 17-AAG or heat shock–mediated increase in the
nuclear HSF-1 immunofluorescence (Fig. 6C). In contrast, in cells
transfected with the hsp70 promoter/h-gal reporter plasmid,
pretreatment and cotreatment with KNK437 significantly inhibited
heat shock– or 17-AAG-induced h-gal expression in K562 cells
Cancer Res 2005; 65: (22). November 15, 2005
Figure 5. Pretreatment with 17-AAG inhibits etoposide-induced apoptosis in
HL-60 cells. A, HL-60 cells were treated with 17-AAG (0.5 Amol/L) for 24 hours
followed by incubation in drug-free medium for 24 hours or washed and
treated with etoposide (1.0 Amol/L) for 24 hours. Drugs were also administered in
the reverse sequence. Following these treatments, the levels of hsp70 were
observed by Western blot analysis. h-Actin levels were used as a loading control.
B, HL-60 cells were treated with 17-AAG (0.5 Amol/L) for 24 hours followed
by either incubation in drug-free medium for 24 hours or washed and treated
with etoposide (1.0 Amol/L) for 24 hours. Drugs were also administered in the
reverse sequence. Following these treatments, the percentage of apoptotic
cells was determined at 48 hours by Annexin V staining and flow cytometry.
Columns, mean of three experiments; bars, FSE.
10540
www.aacrjournals.org
Downloaded from cancerres.aacrjournals.org on July 8, 2017. © 2005 American Association for Cancer
Research.
hsp70 Induction by hsp90 Inhibitors
Figure 6. KNK437 inhibits transactivation of hsp70 by HSF-1 without affecting phosphorylation and nuclear localization of HSF-1. A, K562 cells were treated with
KNK437 at the indicated concentrations for 24 hours. Following this treatment, total cell lysates were immunoblotted with the anti-HSF-1 antibody. h-Actin levels were
used as a loading control. B, K562 cells were treated with KNK437 (400 Amol/L) for 1 hour followed by 17-AAG (5 Amol/L) plus KNK437 for 4 hours. Following
this treatment, the S100 and nuclear fractions were separated and immunoblotted with anti-HSF-1 antibody. Histone H1 and h-actin levels were used as loading
controls. C, K562 cells were treated with KNK437 (400 Amol/L) for 1 hour followed by 17-AAG (5 Amol/L) plus KNK437 for 4 hours. Following this treatment, cells were
immunostained with anti-HSF-1 antibody then incubated in FITC-conjugated secondary antibody. Nuclear material was stained with 4V,6-diamino-2-phenylindole
and visualized with immunofluorescent microscopy. D, K562 cells were transfected with the hsp70 promoter/h-gal reporter construct-containing vector p173OR by
nucleofection (Amaxa) and incubated at 37jC for 36 hours. Following this, cells were treated with the indicated concentrations of either KNK437 for 7 hours, 17-AAG
for 6 hours, heat shock of 42jC for 1 hour, or KNK437 for 1 hour followed by KNK437 plus 17-AAG or heat shock. Columns, mean levels (of three experiments)
of h-gal determined by a colorimetric assay; bars, FSE.
Hsp70 has also been reported to bind AIF and abrogate the
execution of the non–caspase-dependent nuclear DNA fragmentation triggered by the release of AIF from the mitochondria (18, 19).
Additionally, hsp70 has been shown to promote cell survival by
inhibiting lysosomal membrane permeabilization (40). Conversely,
attenuation of hsp70 levels has been shown to sensitize human
leukemia cells to conventional and novel antileukemia agents
(e.g., etoposide, ara-C, and tumor necrosis factor [TNF]–related
apoptosis-inducing ligand; ref. 7). In addition, a lack of hsp70
expression is known to confer increased radiosensitivity (41).
17-AAG binds to the ATP-binding pocket of hsp90 and inhibits its
ATPase activity and chaperone function for hsp90 client proteins
(1, 2). 17-AAG also disrupts the association of hsp90 with HSF-1,
which promotes its nuclear localization and binding to the HSEs
www.aacrjournals.org
in the promoter region of hsp70, leading to the transcriptional
activation of hsp70 (9, 23). This is assisted by HSF-2, which keeps
the promoter region of hsp70 uncompacted, a phenomenon
known as bookmarking (42). Notwithstanding hsp70 induction,
17-AAG-mediated Bax confirmation change, coupled with 17-AAGmediated attenuation of AKT and c-Raf, triggers the mitochondrial
pathway of apoptosis (43). Present studies show for the first time
that the abrogation of hsp70 induction in human leukemia cells by
a variety of maneuvers (e.g., siRNA to hsp70), ectopic expression of
the cDNA of hsp70 in the reverse orientation or treatment with
KNK437, sensitizes human leukemia cells to 17-AAG-induced Bax
conformation change and apoptosis. Conversely, ectopic or high
endogenous expression of hsp70 inhibits 17-AAG-induced Bax
conformation change, mitochondrial localization, and apoptosis,
10541
Cancer Res 2005; 65: (22). November 15, 2005
Downloaded from cancerres.aacrjournals.org on July 8, 2017. © 2005 American Association for Cancer
Research.
Cancer Research
without affecting 17-AAG-mediated hsp90 inhibition and attenuation of the levels of the progrowth and prosurvival proteins AKT
and c-Raf.
Recent reports have shown that TNF-a-mediated activation of
c-Jun NH2-terminal kinase (JNK) induces caspase-8-independent
cleavage of Bid into jBid at a distinct site, which results in the
translocation of jBid to the mitochondria with the selective release
of Smac form the mitochondria into the cytosol (44). Although
overexpression of hsp70 inhibits JNK activation and Bid cleavage,
JNK inhibition was shown to be insufficient for the antiapoptotic
function of hsp70 (45–47). Apoptosis signal-regulating kinase1
(ASK1) is a serine/threonine kinase, which functions in apoptosis
induced by TNF-a and agonistic antibody to Fas (48). Hsp70 was
also shown to inhibit the homo-oligomerization of ASK1 and ASK1dependent apoptosis (49). Conversely, antisense oligonucleotides
to hsp70 were shown to derepress JNK- and ASK1-induced apoptosis (46, 49). However, the role of JNK and ASK1 in regulating
17-AAG-induced apoptosis is not known. Ectopic overexpression
or high endogenous levels of hsp70 were also recently shown to
up-regulate signal transducers and activators of transcription 5
(STAT5) and the antiapoptosis genes transactivated by it (e.g.,
Bcl-xL and Pim-2), thereby conferring resistance to apoptosis
induced by antileukemia agents (7). Conversely, the dominantnegative STAT5 sensitized these cells, albeit not completely, to
apoptosis induced by the antileukemia agents (7). These reports
further highlight how induction of hsp70 could attenuate 17-AAG-
mediated apoptosis in human leukemia cells through multiple
mechanisms. They also show that attenuating hsp70 induction
and targeting these mechanisms could potentially amplify the
antileukemia activity of 17-AAG.
Presumably because in tumor cells hsp90 is more ATP bound
and complexed with its cochaperones and client proteins on
which the tumor cells are dependent for their growth and survival,
17-AAG has been recently shown to have a greater affinity for hsp90
from tumor versus normal cells (50). Because of a greater dependency on the progrowth and prosurvival signaling mediated by
the hsp90 client proteins Bcr-Abl, FLT-3, c-Kit, AKT, and c-Raf, the
leukemia progenitors may also be more vulnerable to the effects
mediated by hsp90 inhibitors through the attenuation of the hsp90
client proteins, which could be another basis for the relatively
selective preclinical antitumor activity of hsp90 inhibitors. 17-AAG
is currently being evaluated in phase I and II clinical trials administered alone or in combination with other anticancer agents
(51, 52). It is clearly important to design combinations in which
the sequence of administration of 17-AAG with the other agents
(e.g., etoposide and ara-C) is optimal and the combination exerts
potent antileukemia effects. Indeed, our findings show that pretreatment with 17-AAG induces hsp70, which inhibits apoptosis
due to etoposide and ara-C. The reversed sequence of administration of etoposide or ara-C followed by 17-AAG induces more
apoptosis than either agent alone or 17-AAG followed by etoposide.
It is possible that, when administered after etoposide or ara-C,
Figure 7. Pretreatment with KNK437 down-regulates
hsp70 levels and sensitizes HL-60 cells to
17-AAG-induced apoptosis. A, cells were treated with
KNK437 at the indicated concentrations for 1 hour
followed by 17-AAG plus KNK437 for 24 hours. Hsp70
levels were detected by Western blot analysis.
h-Actin levels were used as a loading control.
B, cells were treated with KNK437 at indicated
concentrations for 1 hour followed by 17-AAG plus
KNK437 for 72 hours. Following these treatments, the
percentage of apoptotic cells was determined by
Annexin V staining and flow cytometry. Columns,
mean of three experiments; bars, FSE. C, cells
were treated with KNK437 at the indicated
concentrations for 1 hour followed by 17-AAG plus
KNK437 for 72 hours. Following these treatments,
colony culture growth in the methyl cellulose medium
was determined. Columns, percentage of control
colony growth, following exposure to each of the
culture conditions (bottom ); bars, FSE.
Cancer Res 2005; 65: (22). November 15, 2005
10542
www.aacrjournals.org
Downloaded from cancerres.aacrjournals.org on July 8, 2017. © 2005 American Association for Cancer
Research.
hsp70 Induction by hsp90 Inhibitors
17-AAG lowers the threshold of apoptosis due to attenuation of the
prosurvival AKT and c-Raf, thereby enhancing the apoptotic effects
of etoposide and ara-C. Similar to 17-AAG, the other analogues
of geldanamycin (e.g., 17-DMAG and IPI504), or radicicol, inhibit
ATP binding and ATPase activity of hsp90, thereby inhibiting the
chaperone function of hsp90 (1, 2, 53–55). These hsp90 inhibitors
induce hsp70 levels (1, 2). Recently, treatment with the hydroxamic
acid analogue histone deacetylase inhibitors has been shown to
induce acetylation of hsp90 and inhibit its chaperone function
(28, 34). They also induce the intracellular levels of hsp70. Therefore, it is conceivable that strategies that would lead to the
abrogation of hsp70 induction would further increase the
antileukemia efficacy of all of these hsp90 inhibitors. Consistent
with this, in a recent report through a cell-based screen, it has been
possible to identify hsp90 inhibitors that are more effective as
antitumor agents, because they inhibit the chaperone function of
hsp90 without inducing the levels of hsp70 (56).
Unlike hsp90, thus far, inhibitors of the ATP binding pocket of
hsp70 have not been developed. However, inhibitors of the
transcriptional activation of hsp70 have been reported (24, 57).
Although it is a weak inhibitor, KNK437 partially down-regulates
the transcriptional activation and induction of hsp70 (24, 25).
However, the effect of KNK437 on HSF-1 phosphorylation, nuclear
localization, HSE-binding, and hsp70 induction had not been
comprehensively reported. Our present studies show that KNK437
attenuates heat shock– or 17-AAG-induced hsp70 through HSEs,
without affecting the phosphorylation and nuclear localization of
HSF-1. In our studies, why heat shock is more potent than 17-AAG
in inducing hsp70 may possibly be due to the distinct stimulusspecific histone modifications at the hsp70 chromatin targeted by
HSF-1 (58). However, clearly, cotreatment with KNK437 partially
sensitizes leukemia cells to apoptosis and loss of clonogenic
References
1. Isaacs JS, Xu W, Neckers L. Heat shock protein 90 as a
molecular target for cancer therapeutics. Cancer Cell
2003;3:213–7.
2. Bagatell R, Whitesell L. Altered Hsp90 function in
cancer: a unique therapeutic opportunity. Mol Cancer
Ther 2004;3:1021–30.
3. Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper
PW, Pearl LH. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90
molecular chaperone. Cell 1997;90:65–75.
4. Riggs D, Cox M, Cheung-Flynn J, Prapapanich V,
Carrigan P, Smith D. Functional specificity of cochaperone interactions with Hsp90 client proteins.
Crit Rev Biochem Mol Biol 2004;39:279–95.
5. Neckers L. Development of small molecule Hsp90
inhibitors: utilizing both forward and reverse chemical
genomics for drug identification. Curr Med Chem 2003;
10:733–9.
6. Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70based chaperone machinery. Exp Biol Med 2003;228:
111–33.
7. Guo F, Sigua C, Bali P, et al. Mechanistic role of heat
shock protein 70 in Bcr-Abl-mediated resistance to
apoptosis in human acute leukemia cells. Blood 2005;
105:1246–55.
8. Jolly C, Morimoto RI. Role of the heat shock response
and molecular chaperones in oncogenesis and cell
death. J Natl Cancer Inst 2000;92:1564–72.
9. Creagh EM, Sheehan D, Cotter TG. Heat shock
proteins: modulators of apoptosis in tumour cells.
Leukemia 2000;14:1161–73.
www.aacrjournals.org
survival due to treatment with 17-AAG. It is obviously important to
develop more specific and potent inhibitors of hsp70 induction,
which could potentially increase the sensitivity of tumor cells to
17-AAG and the other hsp90 inhibitors. One avenue would be to
inhibit the serine phosphorylation of monomeric HSF-1, which
may affect its nuclear localization, oligomerization, and/or transactivation of the heat shock proteins (8, 9, 22, 23). Under physiologic and stress conditions, multiple protein kinases are likely
to be involved in phosphorylating HSF-1 (8, 9, 22, 23). Among these,
JNK and Plk1 activities may be relevant (59, 60). Therefore, inhibitors of these kinases may undermine HSF-1-mediated transcriptional activation of hsp70. Parenthetically, we recently reported
that the endogenous or ectopic expression of Bcr-Abl in human
leukemia cells leads to increased mRNA and protein levels of
hsp70, and inhibition of Bcr-Abl tyrosine kinase activity with
imatinib resulted in attenuation of p-HSF and hsp70 levels. However, a direct mechanistic link between Bcr-Abl and the downstream phosphatidylinositol 3-kinase/AKT to the phosphorylation
of HSF-1 and induction of hsp70 in Bcr-Abl-expressing acute
leukemia cells remains to be established. Collectively, whether it is
through inhibition of HSF-1 phosphorylation or through attenuation of the transcriptional activation of hsp70, these hsp70-targeted
strategies are likely to enhance the antileukemia effects of hsp90
inhibitors, especially where the mutant versions of the client
proteins (e.g., Bcr-Abl, FLT-3, and c-Kit) are responsible for the
phenotype of the leukemia (2, 61, 62).
Acknowledgments
Received 5/26/2005; revised 8/15/2005; accepted 8/26/2005.
The costs of publication of this article were defrayed in part by the payment of page
charges. This article must therefore be hereby marked advertisement in accordance
with 18 U.S.C. Section 1734 solely to indicate this fact.
10. Rohde M, Daugaard M, Jensen MH, Helin K,
Nylandsted J, Jaattela M. Members of the heat-shock
protein 70 family promote cancer cell growth by distinct
mechanisms. Genes Dev 2005;19:570–82.
11. Volloch VZ, Sherman MY. Oncogenic potential of
Hsp72. Oncogene 1999;18:3648–51.
12. Seo JS, Park YM, Kim JI, et al. T cell lymphoma in
transgenic mice expressing the human Hsp70 gene.
Biochem Biophys Res Commun 1996;218:582–7.
13. Beere HM. ‘‘The stress of dying’’: the role of heat
shock proteins in the regulation of apoptosis. J Cell Sci
2004;117:2641–51.
14. Takayama S, Reed JC, Homma S. Heat-shock proteins
as regulators of apoptosis. Oncogene 2003;22:9041–7.
15. Saleh A, Srinivasula SM, Balkir L, Robbins PD,
Alnemri ES. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2000;2:476–83.
16. Beere HM, Wolf BB, Cain K, et al. Heat-shock protein
70 inhibits apoptosis by preventing recruitment of
procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol
2000;2:469–75.
17. Jaattela M, Wissing D, Kokholm K, Kallunki T,
Egeblad M. Hsp70 exerts its anti-apoptotic function
downstream of caspase-3-like proteases. EMBO J 1998;
17:6124–34.
18. Ravagnan L, Gurbuxani S, Susin SA, et al. Heat-shock
protein 70 antagonizes apoptosis-inducing factor. Nat
Cell Biol 2001;3:839–43.
19. Gurbuxani S, Schmitt E, Cande C, et al. Heat shock
protein 70 binding inhibits the nuclear import of
apoptosis-inducing factor. Oncogene 2003;22:6669–78.
20. Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F,
Jaattela M. Selective depletion of heat shock protein 70
(Hsp70) activates a tumor-specific death program that
10543
is independent of caspases and bypasses Bcl-2. Proc Natl
Acad Sci U S A 2000;97:7871–6.
21. Nylandsted J, Wick W, Hirt UA, et al. Eradication of
glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion. Cancer Res 2002;62:7139–42.
22. Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R.
Repression of heat shock transcription factor HSF1
activation by HSP90 (HSP90 complex) that forms a
stress-sensitive complex with HSF1. Cell 1998;94:471–80.
23. Morimoto RI. Regulation of the heat shock transcriptional response: cross talk between a family of heat
shock factors, molecular chaperones, and negative
regulators. Genes Dev 1998;12:3788–96.
24. Yokota S, Kitahara M, Nagata K. Benzylidene lactam
compound, KNK437, a novel inhibitor of acquisition of
thermotolerance and heat shock protein induction in
human colon carcinoma cells. Cancer Res 2000;60:2942–8.
25. Koishi M, Yokota S, Mae T, et al. The effects of
KNK437, a novel inhibitor of heat shock protein
synthesis, on the acquisition of thermotolerance in a
murine transplantable tumor in vivo . Clin Cancer Res
2001;7:215–9.
26. Bagatell R, Paine-Murrieta GD, Taylor CW, et al.
Induction of a heat shock factor 1-dependent stress
response alters the cytotoxic activity of hsp90-binding
agents. Clin Cancer Res 2000;6:3312–8.
27. Nimmanapalli R, O’Bryan E, Huang M, et al.
Molecular characterization and sensitivity of STI-571
(imatinib mesylate, Gleevec)-resistant, Bcr-Abl-positive,
human acute leukemia cells to SRC kinase inhibitor
PD180970 and 17-allylamino-17-demethoxygeldanamycin. Cancer Res 2002;62:5761–9.
28. Nimmanapalli R, Fuino L, Bali P, et al. Histone
deacetylase inhibitor LAQ824 both lowers expression
Cancer Res 2005; 65: (22). November 15, 2005
Downloaded from cancerres.aacrjournals.org on July 8, 2017. © 2005 American Association for Cancer
Research.
Cancer Research
and promotes proteasomal degradation of Bcr-Abl and
induces apoptosis of imatinib mesylate-sensitive orrefractory chronic myelogenous leukemia-blast crisis
cells. Cancer Res 2003;63:5126–35.
29. Fang G, Kim C, Perkins C, et al. CGP57148 (STI-571)
induces differentiation and apoptosis and sensitizes
Bcr-Abl positive human leukemia cells to apoptosis due
to antileukemic drugs. Blood 2000;96:2246–56.
30. Mosser DD, Caron AW, Bourget L, et al. The
chaperone function of hsp70 is required for protection
against stress-induced apoptosis. Mol Cell Biol 2000;20:
7146–59.
31. Guo F, Sigua C, Tao J, et al. Cotreatment with histone
deacetylase inhibitor LAQ824 enhances Apo-2L/tumor
necrosis factor-related apoptosis inducing ligandinduced death inducing signaling complex activity and
apoptosis of human acute leukemia cells. Cancer Res
2004;64:2580–9.
32. Wittmann S, Bali P, Donapaty S, et al. Flavopiridol
downregulates antiapoptotic proteins and sensitizes
human breast cancer cells to epothilone B-induced
apoptosis. Cancer Res 2003;63:93–9.
33. Yamaguchi H, Bhalla K, Wang HG. Bax plays a pivotal
role in thapsigargin-induced apoptosis of human colon
cancer cells by controlling Smac/Diablo and Omi/HtrA2
release from mitochondria. Cancer Res 2003;63:1483–9.
34. Fuino L, Bali P, Wittmann S, et al. Histone deacetylase
inhibitor LAQ824 down-regulates Her-2 and sensitizes
human breast cancer cells to trastuzumab, taxotere,
gemcitabine, and epothilone B. Mol Cancer Ther 2003;2:
971–84.
35. Xu W, Yuan X, Jung YJ, et al. The heat shock protein
90 inhibitor geldanamycin and the ErbB inhibitor
ZD1839 promote rapid PP1 phosphatase-dependent
inactivation of AKT in ErbB2 overexpressing breast
cancer cells. Cancer Res 2003;63:7777–84.
36. Cory S, Huang DC, Adams J. The Bcl-2 family: roles in
cell survival and oncogenesis. Oncogene 2003;22:8590–607.
37. Yamaguchi H, Paranawithana S, Lee M, Huang Z,
Bhalla K, Wang HG. Epothilone B analogue (BMS247550)mediated cytotoxicity through induction of Bax conformational change in human breast cancer cells. Cancer Res
2002;62:466–71.
38. Wang X. The expanding role of mitochondria in
apoptosis. Genes Dev 2001;15:2922–33.
39. Gotoh T, Terada K, Oyadomari S, Mori M. hsp70DnaJ chaperone pair prevents nitric oxide- and
CHOP-induced apoptosis by inhibiting translocation
of Bax to mitochondria. Cell Death Differ 2004;11:
390–402.
40. Nylandsted J, Gyrd-Hansen M, Danielewicz A, et al.
Heat shock protein 70 promotes cell survival by
inhibiting lysosomal membrane permeabilization.
J Exp Med 2004;200:425–35.
41. Hunt CR, Dix DJ, Sharma GG, et al. Genomic
instability and enhanced radiosensitivity in Hsp70.1and Hsp70.3-deficient mice. Mol Cell Biol 2004;24:
899–911.
42. Xing H, Wilkerson DC, Mayhew CN, et al. Mechanism
of hsp70i gene bookmarking. Science 2005;307:421–3.
43. Nimmanapalli R, O’Bryan E, Kuhn D, Yamaguchi H,
Wang H-G, Bhalla K. Regulation of 17-AAG-induced
apoptosis: role of Bcl-2, Bcl-xL, and Bax downstream of
17-AAG-mediated down-regulation of Akt, Raf-1, and
Src kinases. Blood 2003;102:269–75.
44. Deng Y, Ren X, Yang L, Lin Y, Wu X. A JNK-dependent
pathway is required for TNFa-induced apoptosis. Cell
2003;115:61–70.
45. Gabai VL, Mabuchi K, Mosser DD, Sherman MY.
Hsp72 and stress kinase c-jun N-terminal kinase
regulate the bid-dependent pathway in tumor necrosis factor-induced apoptosis. Mol Cell Biol 2002;22:
3415–24.
46. Park HS, Lee JS, Huh SH, Seo JS, Choi EJ. Hsp72
functions as a natural inhibitory protein of c-Jun Nterminal kinase. EMBO J 2001;20:446–56.
47. Mosser DD, Caron AW, Bourget L, et al. The
chaperone function of hsp70 is required for protection
against stress-induced apoptosis. Mol Cell Biol 2000;20:
7146–59.
48. Hatai T, Matsuzawa A, Inoshita S, et al. Execution of
apoptosis signal-regulating kinase 1 (ASK1)-induced
apoptosis by the mitochondria-dependent caspase
activation. J Biol Chem 2000;275:26576–81.
49. Park HS, Cho SG, Kim CK, et al. Heat shock protein
hsp72 is a negative regulator of apoptosis signalregulating kinase 1. Mol Cell Biol 2002;22:7721–30.
50. Kamal A, Thao L, Sensintaffar J, et al. A high-affinity
conformation of Hsp90 confers tumour selectivity on
Hsp90 inhibitors. Nature 2003;425:407–10.
51. Grem JL, Morrison G, Guo XD, et al. Phase I and
pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J Clin
Oncol 2005;23:1885–93.
Cancer Res 2005; 65: (22). November 15, 2005
10544
52. Goetz MP, Toft D, Reid J, et al. Phase I trial of
17-allylamino-17-demethoxygeldanamycin in patients
with advanced cancer. J Clin Oncol 2005;23:1078–87.
53. Sydor JR, Pien CS, Zhange Y, et al. Anti-tumor activity
of a novel, water soluble Hsp90 inhibitor IPI-504 in
multiple myeloma [abstract]. Proc Am Assoc Cancer Res
2005;45:6160.
54. Hollingshead M, Alley M, Burger AM, et al. In vivo
antitumor efficacy of 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride), a
water-soluble geldanamycin derivative. Cancer Chemother Pharmacol 2005;56:115–25.
55. Soga S, Shiotsu Y, Akinaga S, Sharma SV. Development of radicicol analogues. Curr Cancer Drug Targets
2003;3:359–69.
56. Zhang H, Yang Y-C, Le D, Tsurumoto S, Win V,
Burrows F. The two faces of Hsp90: dissecting the
cytotoxic and cytoprotective responses with selective
Hsp90 modulators [abstract]. Proc Am Assoc Cancer
Res 2005;46:1527.
57. Hosokawa N, Hirayoshi K, Kudo H, et al.
Inhibition of the activation of heat shock factor
in vivo and in vitro by flavonoids. Mol Cell Biol 1992;
12:3490–8.
58. Thomson S, Hollis A, Hazzalin CA, Mahadevan LC.
Distinct stimulus-specific histone modifications at
hsp70 chromatin targeted by the transcription factor
heat shock factor-1. Mol Cell 2004;15:585–94.
59. Dai R, Frejtag W, He B, Zhang Y, Mivechi NF. c-Jun
NH2-terminal kinase targeting and phosphorylation of
heat shock factor-1 suppress its transcriptional activity.
J Biol Chem 2000;275:18210–8.
60. Kim SA, Yoon JH, Lee SH, Ahn SG. Polo-like kinase 1
phosphorylates heat shock transcription factor 1 and
mediates its nuclear translocation during heat stress.
J Biol Chem 2005;280:12653–7.
61. George P, Bali P, Cohen P, et al. Co-treatment with 17allylamino-demethoxygeldanamycin (17-AAG) and FLT3 kinase inhibitor PKC412 is highly effective against
human AML cells with mutant FLT-3. Cancer Res 2004;
64:3645–52.
62. Gorre ME, Ellwood-Yen K, Chiosis G, Rosen N,
Sawyers CL. BCR-ABL point mutants isolated from
patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCRABL chaperone heat shock protein 90. Blood 2002;100:
3041–4.
www.aacrjournals.org
Downloaded from cancerres.aacrjournals.org on July 8, 2017. © 2005 American Association for Cancer
Research.
Abrogation of Heat Shock Protein 70 Induction as a Strategy
to Increase Antileukemia Activity of Heat Shock Protein 90
Inhibitor 17-Allylamino-Demethoxy Geldanamycin
Fei Guo, Kathy Rocha, Purva Bali, et al.
Cancer Res 2005;65:10536-10544.
Updated version
Cited articles
Citing articles
E-mail alerts
Reprints and
Subscriptions
Permissions
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/65/22/10536
This article cites 61 articles, 38 of which you can access for free at:
http://cancerres.aacrjournals.org/content/65/22/10536.full#ref-list-1
This article has been cited by 44 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/65/22/10536.full#related-urls
Sign up to receive free email-alerts related to this article or journal.
To order reprints of this article or to subscribe to the journal, contact the AACR Publications
Department at [email protected].
To request permission to re-use all or part of this article, contact the AACR Publications
Department at [email protected].
Downloaded from cancerres.aacrjournals.org on July 8, 2017. © 2005 American Association for Cancer
Research.
Téléchargement