”GSI’15” ´
Ecole Polytechnique, October 28, 2015
Heights of toric varieties, entropy
and integration over polytopes
Jos´e Ignacio Burgos Gil, Patrice Philippon & Mart´ın Sombra
Patrice Philippon, IMJ-PRG
UMR 7586 - CNRS
1
Toric varieties
Toric varieties form a remarkable class of algebraic varieties,
endowed with an action of a torus having one Zariski dense open
orbit. Toric divisors are those invariant by the action of the torus.
Together with their toric divisors, they can be described
in terms of combinatorial objects such as lattice fans,support
functions or lattice polytopes
(u1,u2)7→0
(u1,u2)7→−u1
(u1,u2)7→−u2
2
Each cone corresponds to an affine toric variety and the fan
encodes how they glue together. If the fan is complete then the
toric variety is proper.
The support function determines a toric divisor Don each
affine toric chart. By duality, the stability set of the support
function is a polytope , which may be empty but which is of
dimension nas soon as Dis nef, which is equivalent to the
support function being concave.
One fundamental result is: if Dis a toric nef divisor then
degD(X) = n!voln(∆).
3
Heights
Aheight measures the complexity of objects over the field of
rational numbers, say. For a/b Q×and d= gcd(a, b):
h(a/b) = log max(|a/d|,|b/d|) = X
v
log max(|a|v,|b|v),
thanks to the product formula:
Y
v
|d|v= 1
for any dQ×and where vruns over all the (normalised)
absolute values on Q(usual and p-adic).
4
Heights
Aheight measures the complexity of objects over the field of
rational numbers, say. For a/b Q×and d= gcd(a, b):
h(a/b) = log max(|a/d|,|b/d|) = X
v
log max(|a|v,|b|v),
thanks to the product formula: Qv|d|v= 1,dQ×.
For points of a projective space x= (x0:. . . :xN)PN(Q):
h(x) = X
v
log kxkv=X
v
log k`(x)kv,
where k·kvis a norm on QN+1 compatible with the absolute value
|·|von Q(usual or p-adic). Metrics on OPN(1):k`(x)kv=|`(x)|v
kxkv.
5
1 / 16 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !