Contents
1 Introduction 1
1.1 Most Significant Results . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Presburger Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Reachability Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Vector Addition Systems . . . . . . . . . . . . . . . . . . . . . . . . . 11
I Presburger Arithmetic 13
2 First Order Logic 15
3 Deciding The Presburger Arithmetic 17
3.1 Quantifier Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Arithmetic Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 TaPAS .................................. 22
3.3.1 Genepi .............................. 23
3.3.2 Alambic ............................. 24
3.3.3 Prestaf ............................. 24
3.4 Conclusion................................. 25
4 Decoding Arithmetic Automata To Presburger Formulas 27
4.1 The Self-Definability . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Polynomial Time Algorithms . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Batof ................................... 30
4.4 Conclusion................................. 32
II Reachability Problems 33
5 Presburger Counter Machines 35
5.1 The Reachability Problem . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Subclasses of Presburger Counter Machines . . . . . . . . . . . . . . 38
5.3 Conclusion................................. 42
6 Good Semi-Algorithms 45
6.1 Acceleration................................ 46
6.2 Abstract Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Interpolation ............................... 52
6.4 Conclusion................................. 58