Equivalence Between
Model-Checking Flat Counter Systems
and Presburger Arithmetic
Amit Kumar Dhar
LIAFA,
Paris.
ULB,
Belgium.
Casstings Meeting
Joint Work With:
Stéphane Demri,Arnaud Sangnier
NYU,
New York. CNRS,
France. LIAFA, Université Paris Diderot,
Paris.
.Verication .Model Checking
..
A System
.
Satises
.
A Property
.................... A
.|=
Model-checking innite state systems are generally undecidable.
Decidability can be obtained by restricting expressiveness.
..
1
.Verication .Model Checking
..
A System
.
Satises
.
A Property
...................
.A
.|=
Model-checking innite state systems are generally undecidable.
Decidability can be obtained by restricting expressiveness.
..
1
.Verication .Model Checking
..
A System
.
Satises
.
A Property
.................... A
.|=
Model-checking innite state systems are generally undecidable.
Decidability can be obtained by restricting expressiveness.
..
1
.Verication .Model Checking
..
A System
.
Satises
.
A Property
.................... A
.|=
Model-checking innite state systems are generally undecidable.
Decidability can be obtained by restricting expressiveness.
..
1
1 / 30 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !