Télécharger

publicité
Etudier une machine thermique en utilisant un
diagramme (P,h)
I - Travail des forces de pression pour un fluide en écoulement
Dans le cas d’un fluide en écoulement, on ne peut pas utiliser l’expression habituelle
pour calculer le travail des forces de pression parce que la pression extérieure a ici
deux valeurs différentes sur la surface du système. Il faut revenir à la définition du
travail d'une force vue en mécanique. On étudie le cas où le système est un volume de
fluide en écoulement dans une conduite.
Soit un fluide s'écoulant dans une conduite dont la section a une surface S. Dans ce
fluide, on isole par l'esprit un système fermé Σ constitué par le fluide contenu dans la
surface comprise entre les sections A1 et A2 de la conduite à l'instant t (voir figure
précédente). A l'instant t' = t + dt le système Σ (donc le même fluide) est contenu
dans la surface comprise entre les sections A’1 et A’2.
On appelle dl1 = A1 A '1 et dl2 = A2 A '2 les déplacement élémentaires entre t et t + dt
des deux sections délimitant le système (voir figure précédente).
Page 1 sur 15
La pression en A1 est égale à P1 et elle est égale à P2 en A2.
On note S la surface de la section de la conduite. La force de pression exercée
appliquée à Σ sur la section A1 s'écrit : F1 = PSu
est le vecteur unitaire dans le sens
1
de l'écoulement. Elle fournit dans le déplacement considéré le travail :
δ W1 = F1.dl1 = PSu
.dl1 = PSu
.dl1u = P1 dV1
1
1
où dV1 est le volume compris entre les section A1 et A’1, volume balayé par la surface
limitant le système. Ce travail est positif : le fluide en amont pousse le fluide de Σ.
La force de pression exercée appliquée à Σ sur la section A2 s'écrit : F2 = − P2 Su . Elle
fournit dans le déplacement considéré le travail :
δ W2 = F2 .dl2 = − P2 Su.dl2 = − P2 Su.dl2 u = − P2 dV2
où dV2 est le volume compris entre les section A2 et A’2, volume balayé par la surface
limitant le système. Ce travail est négatif : le fluide en aval repousse le fluide de Σ.
Au total, le travail des forces de pressions est dans ce cas :
δ W = P1 dV1 − P2 dV2
Remarque : La variation de volume du système est dV = dV2 - dV1. Ainsi, si on avait
P1 =P2 = Pext, on aurait δ W = Pext (dV1 − dV2 ) = − Pext dV et on retrouverait bien la
formule habituelle.
II - Premier principe pour un fluide en écoulement
Lorsque le fluide s’écoule dans une machine thermique, il traverse plusieurs éléments
qui permettent de réaliser les échanges énergétiques considérés.
Afin de pouvoir obtenir une relation faisant apparaitre les échanges énergétiques dans
l’un des éléments du circuit, on utilise le premier principe pour un fluide en
écoulement.
Page 2 sur 15
On considère, de manière générale, un fluide en écoulement lent, passant dans un
élément actif à l’intérieur duquel il peut échanger un travail et/ou un transfert
thermique.
Entre l’entrée et la sortie de cet élément, les grandeurs thermodynamique massiques
du fluide (enthalpie massique h , énergie interne massique u , volume massique v )
changent.
Soient w et q le travail et le transfert thermique massiques reçus par le fluide qui
traverse l’élément actif. Le travail w est échangé par le fluide avec les pièces mobiles,
à l’intérieur de l’élément actif.
On considère le système Σ fermé. Dans l’état initial, Σ contient une masse m
de fluide située devant l’entrée de l’élément actif ainsi que le fluide qui remplit
l’élément actif. Dans l’état final, Σ contient le fluide qui remplit l’élément actif
ainsi que la masse m de fluide à la sortie.
On suppose l’écoulement stationnaire : l’état du fluide en un point donné de la
canalisation est le même à chaque instant (même si, à deux instants différents, ce
n’est pas le même fluide qui s’y trouve). Ainsi, à l’instant final, le fluide à l’intérieur
de l’élément actif a exactement les mêmes propriétés que celui qui se trouve au même
endroit à l’instant initial.
La variation d’énergie interne de Σ entre l’état initial et l’état final provient de la
masse m de fluide qui, dans l’état initial, a une énergie interne massique u e , et dans
l’état final, une énergie interne massique u s : ∆U = mus − mue .
Page 3 sur 15
Pour simplifier, on fait l’hypothèse que le fluide s’écoule lentement et que la variation
d’énergie
cinétique
est
négligeable
devant
la
variation
d’énergie
interne :
∆Ec ≪ ∆U . On fait donc l'approximation ∆Ec = 0 .
Au cours de la transformation, le système Σ reçoit un travail de la part des forces de
pression, qui le poussent à l’entrée et le repoussent à la sortie. On note Pe et Ps les
pressions à l’entrée et à la sortie. Elles sont supposées uniformes sur les volumes
occupés par m à l’entrée et à la sortie.1 On a donc WP = PV
e e − PV
s s avec
Ve = mve et Vs = mvs .
WP = mPeve − mPsvs .
De plus, Σ reçoit dans l’élément actif un travail appelé travail utile Wu . On utilisera
dans la suite le travail utile massique w u ⇒ Wu = mw u .
Σ reçoit aussi un transfert thermique Q = mq .
Premier principe :
∆U + ∆Ec = WP + Wu + Q ⇒ u s − ue = Peve − Psvs + w u + q .
On peut réécrire cette équation
u s + Psvs − ( u e + Peve ) = w u + q ⇒ hs − he = w u + q .
Pour un fluide en écoulement stationnaire lent, traversant un élément actif à
l’intérieur duquel il reçoit un travail utile massique w u et un transfert thermique
massique q , le premier principe s’écrit, en négligeant la variation d’énergie cinétique
∆h = wu + q , où ∆h est la variation d’enthalpie massique entre l’entrée et la
sortie de l’élément actif.
L’intérêt de cette formulation du premier principe est qu’elle ne fait pas intervenir
directement le travail des forces de pression, travail interne au fluide, mais
uniquement le travail utile, travail échangé par le fluide avec les parties mobiles de
l'élément actif.
Exemples
dans le compresseur, le fluide reçoit des pièces mobiles un travail massique w comp
et ne reçoit aucun transfert thermique : ∆h1 = w comp ;
dans le condenseur, il n’y a pas de pièce mobile et le fluide reçoit un transfert
thermique massique q c < 0 de la source chaude2 : ∆h2 = q c ;
1
On choisit m suffisamment petite pour que cela soit le cas.
2
Il lui cède donc le transfert thermique massique −q c > 0 .
Page 4 sur 15
dans le détendeur il n’y a pas de pièce mobile et le fluide ne reçoit aucun transfert
thermique : ∆h3 = 0 ;
dans l’évaporateur il n’a pas de pièce mobile et le fluide reçoit un transfert
thermique massique q f de la source froide : ∆h4 = q f .
III - Diagramme (p,h) ou diagramme des frigoristes
Présentation
Afin d’étudier le fonctionnement de machines thermiques dans lesquelles se
produisent des changements d’état, on utilise souvent des diagrammes ( p, h ) .
Diagramme (p,h) de l’isobutane
En abscisse est portée l’enthalpie massique h , et en ordonnée la pression p . Cette
dernière est fréquemment indiquée en échelle logarithmique, car la gamme de pression
usuelle s’étend sur plusieurs ordres de grandeur.
On distingue trois zones, séparées par une frontière (trait gras) qui correspond au lieu
d’apparition d’un changement état. Au sommet de la frontière figure le point critique
C.
Sous la frontière se situent les états d’équilibre liquide-vapeur.
Sur la partie gauche de la frontière, le fluide est à l’état liquide.
La partie droite du diagramme correspond à la vapeur sèche.
Page 5 sur 15
EA1
Déterminer l’enthalpie massique de vaporisation de l’isobutane sous la pression
p = 1 bar .
Corrigé
Sous
la
pression
p = 1 bar , l’enthalpie massique du liquide saturant est
hℓ = 173 kJ kg−1 , et celle de la vapeur saturante est hv = 539 kJ kg−1 . On peut
alors
en
déduire
l’enthalpie
massique
de
vaporisation :
∆hvap = hv − hℓ = 366 kJ K−1 .
Isothermes
Les isothermes sont les courbes (ici en rouge) qui sont :
des horizontales confondues avec les isobares dans la partie liquide-vapeur, car
dans un changement d’état de corps pur, fixer la température impose la pression ;
seules les extrémités du palier de changement d’état sont ici représentées pour ne
pas surcharger le diagramme ;
des courbes qui tendent à devenir verticales lorsqu’on s’écarte de la frontière
dans la zone de vapeur : en effet, loin des conditions du changement d’état,
la vapeur tend à se comporter comme un gaz parfait, pour lequel h ne
dépend que de T ; T = cste correspond alors à une abscisse h constante.
EA2
Déterminer la température de vaporisation de l’isobutane sous la pression p = 1 bar .
Corrigé
Sous la pression p = 1 bar , la température de changement d’état est T = −12 °C .
Titre en vapeur
Dans la zone d’équilibre liquide-vapeur apparaissent des courbes isotitres (en noir ici,
et le titre en vapeur est ici noté x ).
La frontière avec la zone de vapeur sèche est l’isotitre x = 1 , tandis que le lieu du
liquide est l’isotitre x = 0 .
Un état diphasé est défini par sa pression (ou la température du changement d’état)
et la valeur de x .3
EA3
Déterminer l’enthalpie massique de l’état diphasé de l’isobutane possédant un titre
3
On peut en toute rigueur effectuer une interpolation linéaire en x , car l’enthalpie massique
varie de manière affine avec x sur un palier.
Page 6 sur 15
massique en vapeur x = 0, 30 sous la pression p = 1 bar .
Corrigé
Sous la pression p = 1 bar , l’enthalpie massique de l’état diphasé possédant un titre
massique en vapeur x = 0, 30 est h = 283 kJ kg−1 .
Isentropiques
Les isentropiques sont des courbes croissantes (en bleu ici).
Une évolution adiabatique réversible est facilement représentée sur ce diagramme.
EA4
On comprime jusqu’à la pression p2 = 10 bar de manière adiabatique réversible de
l’isobutane initialement à la température T1 = 40 °C et sous la pression p1 = 1 bar .
Quelle est la température finale atteinte ?
Corrigé
À la température T1 = 40 °C et sous la pression p1 = 1 bar , l’entropie massique de
l’isobutane est s = 2, 60 kJ kg−1 K−1 . On suit l’isentropique correspondante jusqu’à
la pression p2 = 10 bar , et on lit la température T2 = 106 °C .
Isochores
Enfin, on observe aussi les courbes isochores (en vert ici), qui donnent le volume
massique de l’état considéré.
EA5
Quel est le volume V
d’une masse m = 2, 0 kg d’isobutane à la température
T = 80 °C et sous la pression p = 1 bar .
Corrigé
V = mv avec v = 0, 50 m 3 kg−1 ⇒ V = 1, 0 m3 .
Application
On étudie l’exemple d’une machine frigorifique.
Page 7 sur 15
Description du cycle
Au point 1 , le fluide est dans un état de vapeur saturante de titre x = 1 (point de
rosée) à la température T1 = −30 °C .
Dans le compresseur, le fluide subit une transformation adiabatique réversible le
menant dans l’état 2 à la pression p2 = 6 bar . Sur le diagramme
( p, h ) ,
le fluide
suit l’isentropique s = 2, 3 kJ K−1 kg−1 , passant par un état de vapeur sèche avant
de devenir diphasé.
Dans le condenseur, l’évolution est isobare ( p = p2 ) : le fluide change d’état de
manière isotherme (T2 = 45 °C ). Au cours de cette transformation, un transfert
thermique a lieu entre le fluide et un thermostat, qui est l’extérieur de l’enceinte
Page 8 sur 15
réfrigérée. En pratique, c’est l’atmosphère de la pièce où se trouve la machine qui
joue le rôle de thermostat.
Dans l’état 3 , le fluide est liquide à la pression p2 .
Dans le détendeur, le fluide subit une détente isenthalpique : on parle de détente de
Joule-Kelvin4. Sur le diagramme, on suit donc entre 3 et 4 une courbe verticale :
h 3 = h4 .
L’état 4 atteint a même pression p1 que l’état 1 . On note x 4 = 0, 46 le taux de
vapeur correspondant.
Dans l’évaporateur, l’évolution 4 − 1 qui termine le cycle est isobare. Il s’agit de la
vaporisation du fluide jusqu’à revenir à l’état initial 1 . Au cours de ce changement
d’état isobare et isotherme, un transfert thermique a lieu de la source froide,
l’enceinte réfrigérée, vers le fluide. C’est la phase utile au cours de laquelle est
extraite de l’énergie thermique visant à maintenir l’enceinte à une température
inférieure à celle de la pièce malgré les échanges à travers les parois, et lors des
ouvertures de porte.
Bilan énergétique
Premier principe dans un écoulement stationnaire : ∆h = w u + q .
On s’intéresse d’abord au transfert thermique de la source froide vers le fluide : c’est
la grandeur utile. Celui-ci est réalisé lors de la traversée de l’évaporateur. Ce dernier
ne fournit aucun travail au fluide :
q f = h1 − h4 , avec h1 = 516 kJ kg−1 et h4 = 308 kJ kg−1 ⇒ q f = 208 kJ kg−1 .
On a bien q f > 0 , ce qui correspond au fonctionnement d’une machine frigorifique.
On s’intéresse également au travail de compression, qui représente la dépense.5 La
compression est adiabatique : w c = h2 − h1 avec
h2 = 611 kJ kg−1 ⇒ wc = 95 kJ kg−1 .
L’efficacité frigorifique est alors eF =
qf
h − h4
= 1
= 2, 2 .
wc
h2 − h1
On peut la comparer à l’efficacité frigorifique de Carnot : eFC =
T1
= 3, 2 .
T2 − T1
On a bien eF < eFC .
4
5
Ou Joule-Thomson.
Il faut alimenter électriquement le compresseur pour faire fonctionner une machine
frigorifique.
Page 9 sur 15
La différence est due à l’irréversibilité de la détente de Joule-Kelvin 3 − 4 , au cours
de laquelle le fluide est en contact thermique avec la source froide.
IV – Exercice
Climatisation d’une voiture
La quasi-totalité des véhicules neufs sont aujourd'hui équipés d'une climatisation.
Pour refroidir l'air intérieur du véhicule, un fluide frigorigène, l'hydrofluorocarbone
HFC connu sous le code RI 34a, effectue en continu des transferts énergétiques entre
l'intérieur, l'extérieur du véhicule et le compresseur.
Sur le diagramme enthalpique (P,h) (voir figure ci-dessous) de hydrofluorocarbone
HFC, de masse molaire M = 32 g.mol-1, sont représentés :
• la courbe de saturation de l'équilibre liquide-vapeur de l’hydrofluorocarbone HFC
(en trait fort),
• les isothermes pour des températures comprises entre - 40°C et 160°C par pas de
10°C,
• les isentropiques pour des entropies massiques comprises entre l,70 kJ.K-l.kg-1 et
2,25 kJ.K-l.kg-1, par pas de 0,05 kJ.K-l.kg-1,
• les isotitres en vapeur sous la courbe de saturation pour des titres massiques en
vapeur xg variant de 0 à 1 par pas de 0,1.
P est en bar et h en kJ.kg-1
Lors de l'exploitation du diagramme, les mesures seront faites avec les incertitudes
suivantes :
∆P
= 5%.
P
1. Où sont sur le diagramme les domaines liquide, vapeur, équilibre liquide-vapeur du
Δh = ±5 kJ.kg-1, Δs = ± 50 J.K-1.kg-1, Δx = ±0,05, ΔT = ±5°C,
fluide ?
2. Dans quel domaine du diagramme le fluide à l'état gazeux peut-il être considéré
comme un gaz parfait ?
Page 10 sur 15
On étudie dans la suite l'évolution du fluide au cours d'un cycle en régime permanent.
Le transfert thermique reçu par le fluide dans l'évaporateur permet la vaporisation
isobare complète du fluide venant de (4) et conduit à de la vapeur à température T1
= 5°C et pression P1 =3 bar : point (1).
3. Placer le point (1) sur le diagramme. Relever la valeur de l'enthalpie massique h1 et
de l'entropie massique s1 du fluide au point (1).
Le compresseur aspire la vapeur (1) et la comprime de façon isentropique avec un
P
taux de compression r = 2 = 6.
P1
4. Déterminer P2. Placer le point (2) sur le diagramme. Relever la valeur de la
température T2 et celle de l'enthalpie massique h2 en sortie du compresseur.
5. Déterminer la valeur du travail mécanique massique wm reçu par le fluide lors de
son passage dans le compresseur. Commenter le signe de wm.
Le fluide sortant du compresseur entre dans le condenseur dans lequel il est refroidi
de manière isobare jusqu'à la température T3 = 60°C : point (3).
6. Placer le point (3) sur le diagramme. Relever la valeur de l'enthalpie massique h3
en sortie du condenseur.
Le fluide sortant du condenseur est détendu dans le détendeur supposé adiabatique
jusqu'à la pression de l'évaporateur P1 : point (4).
7. Montrer que la transformation dans le détendeur est isenthalpique.
8. Placer le point (4) sur le diagramme et tracer le cycle complet. Relever la valeur de
la température T4 et le titre massique en vapeur x4 en sortie du détendeur.
9. En déduire le transfert thermique massique qe échangé par le fluide lors de son
passage à travers l'évaporateur entre (4) et (1). L'air intérieur du véhicule est-il
refroidi ?
10. Définir l'efficacité e, ou coefficient de performance, du climatiseur. Calculer sa
valeur.
11. Comparer cette valeur à celle d'un climatiseur de Carnot fonctionnant entre la
température de l'évaporateur et la température de liquéfaction du fluide sous la
pression P2. Commenter le résultat obtenu.
12. Le débit massique du fluide est Dm = 0,1 kg.s-1. Calculer la puissance thermique
évacuée de l'intérieur du véhicule et la puissance mécanique consommée par le
climatiseur.
Page 11 sur 15
Page 12 sur 15
1. Le domaine de l'équilibre liquide-vapeur se trouve entre la courbe de saturation et
l'axe des abscisses ; le domaine de la vapeur est à droite, du côté des plus grandes
enthalpies massiques (donc des plus grandes températures); le domaine du liquide est
à gauche, du côté des plus petites enthalpies massiques (donc des plus petites
températures).
2. Le gaz parfait suit la deuxième loi de Joule : son enthalpie massique est fonction
uniquement de la température. Donc, pour un gaz parfait, si T = constante alors h =
constante et les isothermes sont des isenthalpiques soit des droites verticales. Sur le
diagramme c'est le cas dans la zone P < 0,8 bar et h > 50 kJ.kg-1, en bas à droite du
diagramme. Dans cette zone le fluide réel se comporte comme un gaz parfait.
3. On place le point (1) sur le diagramme, sur l'isobare P1 = 3 bar et entre les
isothermes 0°C et 10°, à peu près au milieu.
On lit à l'abscisse de ce point : h1 = 405 kJ.kg-1.
Ce point se trouve entre les isentropiques 1,70 et 1,75 kJ.K-1.kg-1, plus près de la
seconde ; la réponse : s1 = 1,75 kJ.K-1.kg-1 est suffisante pour la précision demandée
par l'énoncé.
Page 13 sur 15
4. P2 = 3P1 = 18 bar. La compression étant isentropique, le point (2) se trouve à
l'intersection de l'isobare 18 bar, droite horizontale, et de l'isentropique 1,75 kJ.K-1.kg1
. On lit à l'abscisse de ce point : h2 = 440 kJ.kg-1
Et ce point se trouve pratiquement sur l'isotherme 70°C; avec la précision demandée
par l'énoncé, T2 = 70°C.
5. Le premier principe pour un fluide en écoulement stationnaire, appliqué entre
l'entrée et la sortie du compresseur, s'écrit : Δh = h2 -h1 = wm + 0 car la compression
est adiabatique, soit: wm = 440-405 = 35 kJ.kg-1.
6. Le point (3) se trouve à l'intersection de l'isobare 18 bar et de l'isotherme 60°C. Le
point se trouve dans la zone du liquide où l'isotherme n'est pas tracée. On sait que
c'est une droite verticale que l'on peut compléter pour trouver le point (3). On lit à
l'abscisse de ce point : h3 = 285 kJ.kg-1.
7. Dans le détendeur, le fluide ne reçoit pas de transfert thermique, ni de travail autre
que celui des forces de pression. Le premier principe pour un fluide en écoulement
stationnaire s'écrit donc : Δh = h4 — h3 = q + w = 0, soit h4 = h3. La transformation
est isenthalpique.
8. Le point (4) se trouve à l'intersection de l'isenthalpique (droite verticale) passant
par le point (3) et de l'isobare 3 bar (droite horizontale). Ce point se trouve
pratiquement sur l'isotherme 0°C donc T4 = 0°C. Il se trouve entre les isotitres 0,40
et 0,50. Le titre massique en vapeur en ce point est : x4 = 0,45.
9. Le premier principe pour un fluide en écoulement stationnaire, appliqué entre
l'entrée et la sortie de l'évaporateur, s'écrit h1 — h4 = qe car il n'y a pas de travail
autre que celui des forces de pression, soit : qe = 405 — 285 = 120 kJ.kg-1.
L'air intérieur à la voiture est bien refroidi car qe > 0 : le transfert thermique est reçu
par le fluide.
10. L'efficacité du climatiseur est le rapport de l'énergie utile, qe divisée par l'énergie
q
120
coûteuse, wm, soit : e = e =
≈ 3.
wm 35
11. L'efficacité d'un climatiseur réversible fonctionnant entre la température de
l'évaporateur T4 et la température d'équilibre liquide - vapeur pour 18 bar, soit
T4
273
environ T3 serait : erev =
=
= 4, 6 . Elle est plus grande que l'efficacité de la
T3 − T4
60
machine réelle.
T3-T4 60-0
Page 14 sur 15
C'est le signe que la machine réelle n'est pas réversible. La transformation dans le
détendeur est irréversible.
12. Pendant une durée Δt, une masse de fluide DmΔt passe dans l'évaporateur.
L'énergie thermique prise à l'intérieur de la voiture est donc Qe = mqe = DmqeΔt. La
puissance thermique évacuée de l'intérieur de la voiture est donc : Pe = Dmqe = 12
kW.
Page 15 sur 15
Téléchargement