Random walks in cones: critical exponents
Lecture #2
Analytic and probabilistic tools for lattice path enumeration
Kilian Raschel
77th S´eminaire Lotharingien de Combinatoire
September 13, 2016
Strobl, Austria
Introduction
Dimension 1: examples & limits
Central idea in dimension >2: approximation by Brownian motion
Application #1: excursions
Application #2: walks with prescribed length
Random processes (RW & BM) in cones
First exit time from a cone C
C
x-
*
?-
-
@
@I
.τC= inf{nN:S(n)/C}(SRW)
.TC= inf{tR+:B(t)/C}(BBM)
Persistence probabilities ;total number of walks
.Px[τC>n]κ·V(x)·ρn·nα
×× ×
Local limit theorems ;excursions
.Px[τC>n,S(n)=y]κ·V(x,y)·ρn·nα
× × ×
Aim of the talk: understanding the critical exponents α
Random processes (RW & BM) in cones
First exit time from a cone C
C
x-
*
?-
-
@
@I
.τC= inf{nN:S(n)/C}(SRW)
.TC= inf{tR+:B(t)/C}(BBM)
Persistence probabilities ;total number of walks
.Px[τC>n]κ·V(x)·ρn·nα
×× ×
Local limit theorems ;excursions
.Px[τC>n,S(n)=y]κ·V(x,y)·ρn·nα
× × ×
Aim of the talk: understanding the critical exponents α
Random processes (RW & BM) in cones
First exit time from a cone C
C
x-
*
?-
-
@
@I
.τC= inf{nN:S(n)/C}(SRW)
.TC= inf{tR+:B(t)/C}(BBM)
Persistence probabilities ;total number of walks
.Px[τC>n]κ·V(x)·ρn·nα
×× ×
Local limit theorems ;excursions
.Px[τC>n,S(n)=y]κ·V(x,y)·ρn·nα
× × ×
Aim of the talk: understanding the critical exponents α
1 / 104 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !