Dynamic predictions from joint models
and their evaluation
C´
ecile Proust-Lima
INSERM U897, Epidemiologie et Biostatistique, Bordeaux, France
Univ. Bordeaux Segalen, ISPED, Bordeaux, France
Dynamic predictions for repeated markers and repeated events
October 11th, 2013 - Bordeaux, France
C´
ecile Proust-Lima (INSERM) Dynamic predictions from joint models GSO workshop - October 2013 1 / 29
Motivating example
Monitoring of prostate cancer progression after radiation therapy (RT) :
-Prostate Specific Antigen (PSA)
wellknown biomarker of prostate cancer progression
-Clinical recurrence of prostate cancer predicted using :
diagnosis information : initial log PSA, Gleason score and T-stage
last value of PSA or PSA summary (PSA doubling time)
C´
ecile Proust-Lima (INSERM) Dynamic predictions from joint models GSO workshop - October 2013 2 / 29
PSA individual trajectories
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
C´
ecile Proust-Lima (INSERM) Dynamic predictions from joint models GSO workshop - October 2013 3 / 29
PSA individual trajectories
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
time since end of RT
log(PSA+0.1)
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
0 2 4 6 8 10
−2 −1 0 1 2 3 4
C´
ecile Proust-Lima (INSERM) Dynamic predictions from joint models GSO workshop - October 2013 4 / 29
Motivating example
Monitoring of prostate cancer progression after radiation therapy (RT) :
-Prostate Specific Antigen (PSA)
wellknown biomarker of prostate cancer progression
-Clinical recurrence of prostate cancer predicted using :
diagnosis information : initial log PSA, Gleason score and T-stage
last value of PSA or PSA summary (PSA doubling time)
Problems :
-whole PSA trajectory highly associated with the risk of recurrence
-PSA = internal noisy time-dependent covariate (see Dimitris’s talk)
Solution :
focus on joint models for computing & evaluating dynamic prognostic tools
of prostate cancer recurrence based on the PSA trajectory
C´
ecile Proust-Lima (INSERM) Dynamic predictions from joint models GSO workshop - October 2013 5 / 29
1 / 44 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !