Exercices
1. Factoriser les expressions suivantes:
(a) 2x28y2=2(x2y)(x+2y)
(b) 3x33xy2=3x(xy)(x+y)
(c) 15x215 = 15 (x1) (x+1)
(d) 162 2x2=2(9x)(9+x)
(e) 4a48b4=4¡a42b4¢
(f) (4xy)2(4x+8y)2=9y(8x+7y)
(g) 64a2(x2a)2=(6a+x)(10ax)
(h) 75x248 = 3 (5x4) (5x+4)
(i) x81
64 =¡x41
8¢¡x4+1
8¢
(j) 3
25 3a2
16 =3¡1
5a
4¢¡1
5+a
4¢
(k) 9 (x2y)216 (y3x)2=5(2y+9x)(2y3x)
(l) (4x7y)24x2=(2x7y)(6x7y)
(m) a8b8=¡a4+b4¢(a2+b2)(a+b)(ab)
(n) 3y5+6ay3+3y4=3y3¡y2+2a+y¢
(o) 4x2y+32xy2+8x2y2=4xy (x+2yx +8y)
(p) (xy +z)(x+y)(2yx)(xy +z)=(xy +z)(2xy)
(q) 3x¡x2+y2¢(x2+y2)6y+3¡y2+x2¢=3(x2y+1)¡x2+y2¢
2. R´esoudre les ´equations suivantes :
(a) 6(x+5)5x=25................................................................S={5}
(b) 4(4 + 2x)=603x.................................................................S={4}
(c) 60x+1=3(3+4x)................................................................S=©1
6ª
(d) 3x1
2(4 x)=x1
3............................................................. S=©2
3ª
(e) 3x1
2¡x
5+6
¢=25+3x
2..........................................................S={20}
(f) 2x
51
3¡5x
44¢=x+27
5..........................................................S={4}
(g) x29=0......................................................................S={3,3}
(h) 4x21= 0....................................................................S=©1
2,1
2ª
(i) x23x=0 ...................................................................... S={0,3}
(j) (x1)2+2(x+1)(x1) 3x(x2) = 7.........................................S={2}
(k) (2x1)2+(2x+3)
2=2x(4x1)................................................S={1}
(l) (4x+7)
2=(x+3)
2..........................................................S=©2; 4
3ª
(fact.tex)
A) Mettre en ´evidence tous les facteurs communs:
1. ab +b................................................................................ =b(a+1)
2. ma +ap ............................................................................. =a(m+p)
3. a3x2a2x3....................................................................... =a2x2(ax)
4. 4ac 2ab ........................................................................... = 2a(2cb)
5. 6a2b+4ab ........................................................................ = 2ab(3a+2)
6. 24b3c536bc2................................................................ = 12bc2(2b2c33)
7. 3a3b412a2b3.................................................................. =3a2b3(ab 4)
8. 15a7b210a5b3............................................................... = 5a5b2(3a22b)
9. 3a2bc2abc3..................................................................... =abc2(3ac)
10. 10ac2+15a2c.................................................................... =5ac(2c+3a)
11. 12x2y218xy3+24x3y................................................. = 6xy(2xy 3y2+4x2)
12. 12a2x330a3x2+18ax4............................................... =6ax2(2ax 5a2+3x2)
13. y(ba)x(ba).............................................................. = (ba)(yx)
14. a(x2+y2)b(x2+y2)....................................................... =(x2+y2)(ab)
15. a(x+y)+b(x+y)............................................................. =(x+y)(a+b)
16. (ab)+x(ab)............................................................... = (ab)(1 + x)
17. 3ab(bc)3ab(bc)2............................................................... =ab3c2(3bc 1)
18. 2a3b2+8a3b36a4b........................................................ =2a3b(b+4b23a)
19. 3x3y2z9x2y3z2+18x4y2z2......................................... =3x2y2z(x3yz +6x2z)
20. a(bc)b(bc)+c(bc)................................................. = (bc)(ab+c)
B) Factoriser en utilisant les identit´es remarquables:
1. a29.......................................................................... = (a+3)(a3)
2. a216b2..................................................................... = (a+4b)(a4b)
3. a49b2.................................................................... = (a2+3b)(a23b)
4. a225x2.................................................................... = (a+5x)(a5x)
5. a2x2b2x2................................................................ = (ax +bx)(ax bx)
6. 4x216a2................................................................. = (2x+4a)(2x4a)
7. x3yxy3.................................................................... =xy(x+y)(xy)
8. 32a22b4................................................................. =2(4a+b2)(4ab2)
(fact.tex)
9. 50x42y2................................................................ = 2(5x2+y)(5x2y)
10. 256x264a4............................................................. = 64(2x+a2)(2xa2)
11. a2x281x2.................................................................. =x2(a+9)(a9)
12. 16x2y2121y4........................................................ =y2(4x+11y)(4x11y)
13. x4y2x2y4................................................................ =x2y2(x+y)(xy)
14. 3a3x3ax3................................................................ =3ax(a+x)(ax)
15. 150a6b224a2b2...................................................... =6a2b2(5a2+ 2)(5a22)
16. x481................................................................. =(x2+9)(x+3)(x3)
17. 81x4625a4.................................................. = (9x2+25a2)(3x+5a)(3x5a)
18. 32x42a4........................................................ =2(4x2+a2)(2x+a)(2xa)
19. 3ax43ay4......................................................... = 3a(x2+y2)(x+y)(xy)
20. 3x548xy8................................................... =3x(x2+4y4)(x+2y2)(x2y2)
21. (ab)2c2............................................................. = (ab+c)(abc)
22. (a+b)2(xy)2.............................................. =(a+b+xy)(a+bx+y)
23. (5a+2b)2(2b5a)2................................................................... =40ab
24. (x+a)2(3x2a)2........................................................ =(4xa)(3a2x)
25. (a+b+c)2(a2bc)2................................................... =(2ab)(3b+2c)
26. (x+1)
2(x1)2......................................................................... = 4x
C) Factoriser en utilisant les identit´es remarquables:
1. a2+4ab +4b2....................................................................... = (a+2b)2
2. 9a212ab +4b2.................................................................... = (3a2b)2
3. 4a24a+1......................................................................... = (2a1)2
4. a2a+1
4............................................................................ = (a1
2)2
5. x4+2x2+1......................................................................... = (x2+1)
2
6. x6+6x3+9......................................................................... = (x3+3)
2
7. ab22abc +ac2..................................................................... =a(bc)2
8. x2
16 3xy
2+9y2...................................................................... = (x
43y)2
9. 4x4+x2y+y2
16 ..................................................................... = (2x2+y
4)2
10. 9a4b26a2bc +c2................................................................. =(3a2bc)2
11. 9a2
4ab +b2
9........................................................................ = (3a
2b
3)2
(fact.tex)
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !