Effectuer, r´eduire. Factoriser.
Faire disparaˆıtre les parenth`eses et r´eduire :
1. a2−(b2−c2)+b2−(a2+c2)−c2−(a2−b2)
2. (4a3−2a2+a+1)−(−a2+3a3−a−7) −(a3−4a2+8+2a)
3. (2a−3b+4c)−(5c−5a−4b)+(b+c−7a)
4. 6a+3b−(5a+2b+3c)+(−4a−3b)
5. (6a+5b)−(4a+b−3c)−(2c+5a+3b)
6. 3a2b2+4b4−(a3b−4a2b2−3ab3+2b4)−ab3−(4a2b2+3b4)+3a4
7. a2−(b2−c2)−[b2−(c2−a2)] −[c2−(b2−a2)]
8. [a3+b3−(3a2b+3ab2)] −[(a3−3a2b)−(3ab2−b3)]
9. (a+2b−6a)−[3b−(6a−6b)] −[(a−3b)−(2a+5b)]
10. 7x−[−3x−[4x−(5x−2y)] −(−3y+2x)]
11. 2x−(3y+3z)−[5y−(6z−6y)+5z−[4x−(2z−5y)]]
Effectuer et r´eduire :
1. 91x2y2z2−7x2y(13yz2−9y2z)−21y3z(3x2−2z2)
2. 9x2yz(2xy2z2−4x5y6z6)−3x3y5z7(x8y6z4−13x4y2)
3. 13x2b2(8x5b7−2x4b9)−2x4b5(9x3b4−13x2b6)
4. (x+y−z)z+(x−y+z)y+(−x+y+z)x−2[x(y−x)+y(z−y)+z(x−z)]
5. [a2+(n−1)a+1]a+[a2−(n−1)a+1]a
6. a[2a+b−(a+2b)] + a[3a−2b−(2a−3b)] −a[a+3b−(2a+2b)]
7. 15a2+24b2−(3a+2b)(5a+6b)
8. 2ab +a(9a+8b)−(8a−9b)(5a+7b)−(3a−2b)(5a+8b)
9. (3a−6b)(4a−3b)−[(2a−5b)(6a−11b)−(37b2−6ab)]
10. (3a3−2a2+a−1)(5a2−4a−1) −(15a4−12a3+3a2−a−1)(a−1)