Eectuer, r´eduire. Factoriser.
Faire disparaˆıtre les parenth`eses et r´eduire :
1. a2(b2c2)+b2(a2+c2)c2(a2b2)
2. (4a32a2+a+1)(a2+3a3a7) (a34a2+8+2a)
3. (2a3b+4c)(5c5a4b)+(b+c7a)
4. 6a+3b(5a+2b+3c)+(4a3b)
5. (6a+5b)(4a+b3c)(2c+5a+3b)
6. 3a2b2+4b4(a3b4a2b23ab3+2b4)ab3(4a2b2+3b4)+3a4
7. a2(b2c2)[b2(c2a2)] [c2(b2a2)]
8. [a3+b3(3a2b+3ab2)] [(a33a2b)(3ab2b3)]
9. (a+2b6a)[3b(6a6b)] [(a3b)(2a+5b)]
10. 7x[3x[4x(5x2y)] (3y+2x)]
11. 2x(3y+3z)[5y(6z6y)+5z[4x(2z5y)]]
Eectuer et r´eduire :
1. 91x2y2z27x2y(13yz29y2z)21y3z(3x22z2)
2. 9x2yz(2xy2z24x5y6z6)3x3y5z7(x8y6z413x4y2)
3. 13x2b2(8x5b72x4b9)2x4b5(9x3b413x2b6)
4. (x+yz)z+(xy+z)y+(x+y+z)x2[x(yx)+y(zy)+z(xz)]
5. [a2+(n1)a+1]a+[a2(n1)a+1]a
6. a[2a+b(a+2b)] + a[3a2b(2a3b)] a[a+3b(2a+2b)]
7. 15a2+24b2(3a+2b)(5a+6b)
8. 2ab +a(9a+8b)(8a9b)(5a+7b)(3a2b)(5a+8b)
9. (3a6b)(4a3b)[(2a5b)(6a11b)(37b26ab)]
10. (3a32a2+a1)(5a24a1) (15a412a3+3a2a1)(a1)
11. (a2b2)(2a34a2b5ab2)(b2a2)(4a3+8a2b+5ab2)
12. [(xy)a2(xy)a+(xy)][(x+y)a2+(x+y)a+(x+y)]
13. (x2y2)(2x3y+5z)+(yx)(3x2+4yz 5xz)+(y2x2)(4x3y+z)
Factoriser les expressions suivantes :
1. xy +y
2. mx +xp
3. x3a2x2a3
4. 4xz 2xy
5. 6x2y+4xy
6. 24y3z536yz2
7. 3x3y412x2y3
8. 15x7y210x5y3
9. 3x2yz2xyz3
10. b(yx)a(yx)
11. x(a2+b2)y(a2+b2)
12. 2yz56y2z4+6y3z32y4z2
13. 2x3y2+8x3y36x4y
14. 3a3b2c9a2b3c2+18a4b2c2
15. x(yz)y(yz)+z(yz)
16. 10xz2+15x2z
17. 12a2b218ab3+24a3b
18. 12x2a330x3a2+18xa4
19. x(a+b)+y(a+b)
20. (xy)+a(xy)
Solutions
1. a2(b2c2)+b2(a2+c2)c2(a2b2)=a2+b2c2
2. (4a32a2+a+1)(a2+3a3a7) (a34a2+8+2a)=3a2
3. (2a3b+4c)(5c5a4b)+(b+c7a)=2b
4. 6a+3b(5a+2b+3c)+(4a3b)=3a2b3c
5. (6a+5b)(4a+b3c)(2c+5a+3b)=3a+b+c
6. 3a2b2+4b4(a3b4a2b23ab3+2b4)ab3(4a2b2+3b4)+3a4
=3a2b2b4a3b+2ab3+3a4
7. a2(b2c2)[b2(c2a2)] [c2(b2a2)] = a2b2+c2
8. [a3+b3(3a2b+3ab2)] [(a33a2b)(3ab2b3)] = 0
9. (a+2b6a)[3b(6a6b)] [(a3b)(2a+5b)] = 2a+b
10. 7x[3x[4x(5x2y)] (3y+2x)] = 11xy
11. 2x(3y+3z)[5y(6z6y)+5z[4x(2z5y)]] = 6x9y4z
Eectuer et r´eduire :
1. 91x2y2z27x2y(13yz29y2z)21y3z(3x22z2)=42y3z3
2. 9x2yz(2xy2z24x5y6z6)3x3y5z7(x8y6z413x4y2)=18x3y3z3+3x7y7z73x11y11z11
3. 13x2b2(8x5b72x4b9)2x4b5(9x3b413x2b6)=86x7b9
4. (x+yz)z+(xy+z)y+(x+y+z)x2[x(yx)+y(zy)+z(xz)] = z2+y2+x2
5. [a2+(n1)a+1]a+[a2(n1)a+1]a=2a3+2a
6. a[2a+b(a+2b)] + a[3a2b(2a3b)] a[a+3b(2a+2b)] = 3a2ab
7. 15a2+24b2(3a+2b)(5a+6b)=12b228ab
8. 2ab +a(9a+8b)(8a9b)(5a+7b)(3a2b)(5a+8b)=15ab 46a2+79b2
9. (3a6b)(4a3b)[(2a5b)(6a11b)(37b26ab)] = 13ab
10. (3a32a2+a1)(5a24a1)(15a412a3+3a2a1)(a1) = 5a45a33a2+3a
11. (a2b2)(2a34a2b5ab2)(b2a2)(4a3+8a2b+5ab2)=6a5+4a4b6a3b24b3a2
12. [(xy)a2(xy)a+(xy)][(x+y)a2+(x+y)a+(x+y)]
=x2y2+x2a4+x2a2a4y2a2y2
13. (x2y2)(2x3y+5z)+(yx)(3x2+4yz 5xz)+(y2x2)(4x3y+z)
=5x3+3x2y+9x2z+2y2x9xyz
Factoriser les expressions suivantes :
1. xy +y=y(x+1)
2. mx +xp =x(m+p)
3. x3a2x2a3=a2x2(xa)
4. 4xz 2xy =2x(2zy)
5. 6x2y+4xy =2xy (3x+2)
6. 24y3z536yz2=12yz2(2z3y23)
7. 3x3y412x2y3=3x2y3(xy 4)
8. 15x7y210x5y3=5x5y2(3x22y)
9. 3x2yz2xyz3=xyz2(z+3x)
10. b(yx)a(yx)=(xy)(ab)
11. x(a2+b2)y(a2+b2)=(a2+b2)(xy)
12. 2yz56y2z4+6y3z32y4z2=2yz2(z33yz2+3y2zy3)
13. 2x3y2+8x3y36x4y=2x3y(4y2+y3x)
14. 3a3b2c9a2b3c2+18a4b2c2=3a2b2c(3bc +6ca2+a)
15. x(yz)y(yz)+z(yz)=(yz)(xy+z)
16. 10xz2+15x2z=5xz (2z+3x)
17. 12a2b218ab3+24a3b=6ab (2ab 3b2+4a2)
18. 12x2a330x3a2+18xa4=6xa2(3a+5x)(x+a)
19. x(a+b)+y(a+b)=(x+y)(a+b)
20. (xy)+a(xy)=(xy)(a+1)
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !