1) f(x) = x4+ 3x2
6f0(x) = 4x3+ 6x
2) f(x)=6x3
x2f0(x) = 18x2
2x
3) f(x) = x5
a+b
x2
abf0(x) = 5x4
a+b
2x
ab
4) f(x) = x3
x2+ 1
5f0(x) = 3x2
2x
5
5) f(x)=2ax3
x2
b+c f0(x) = 6ax2
2x
b
6) f(x)=6x7/2+ 4x5/2+ 2x f0(x) = 21x5/2+ 10x3/2+ 2
7) f(x) = 3x+3
x+1
xf0(x) = 3
2x+1
33
x2
1
x2
8) f(x) = (x+ 1)3
x3/2f0(x) = 3(x+ 1)2(x1)
2x5/2
9) f(x) = x
m+m
x+x2
n2+n2
x2f0(x) = 1
m
m
x2+2x
n2
2n2
x3
10) f(x) = 3
x22x+ 5 f0(x) = 2
33
x
1
x
11) f(x) = ax2
3
x+b
xx
3
x
xf0(x) = 5
3ax2/3
3
2bx5/2+1
6x7/6
12) f(x) = (1 + 4x3)(1 + 2x2)f0(x) = 4x(1 + 3x+ 10x3)
13) f(x) = x(2x1)(3x+ 2) f0(x) = 2(9x2+x1)
14) f(x) = (2x1)(x2
6x+ 3) f0(x) = 6x2
26x+ 12
15) f(x) = 2x4
b2x2f0(x) = 4x3(2b2
x2)
(b2x2)2
16) f(x) = ax
a+xf0(x) =
2a
(a+x)2
17) f(t) = t3
1 + t2f0(t) = t2(3 + t2)
(1 + t2)2
18) f(s) = (s+ 4)2
s+ 3 f0(s) = (s+ 2)(s+ 4)
(s+ 3)2
19) f(x) = x2+ 2
x2x2f0(x) = x4
2x3
6x2
4x+ 2
(x2x2)2
20) f(x) = xp
xmamf0(x) = xp1((pm)xmpam)
(xmam)2
21) f(x) = (2x2
3)2f0(x) = 8x(2x2
3)
22) f(x)=(x2+a2)5f0(x) = 10x(x2+a2)4
23) f(x) = px2+a2f0(x) = x
x2+a2
24) f(x)=(a+x)ax f0(x) = a3x
2ax
25) f(x) = r1 + x
1xf0(x) =
1
(1 x)1x2
26) f(x) = 2x2
1
x1 + x2f0(x) = 1+4x2
x2p(1 + x2)3
27) f(x) = 3
px2+x+ 1 f0(x) = 2x+ 1
33
p(x2+x+ 1)2
28) f(x) = (1 + 3
x)3f0(x) = 1 + 1
3
x2
29) f(x) = rx+qx+x f0(x) = 1
2qx+px+x 1 + 1
2px+x1 + 1
2x!
30) f(x) = sin2x f0(x) = sin 2x
31) f(x) = 2 sin x+ cos 3x f0(x) = 2 cos x3 sin 3x
32) f(x) = tan(ax +b)f0(x) = a
cos2(ax +b)
33) f(x) = sin x
1 + cos xf0(x) = 1
1 + cos x
34) f(x) = sin 2xcos 3x f0(x) = 2 cos 2xcos 3x3 sin 2xsin 3x
35) f(x) = cot25x f0(x) = 10 cot 5xcsc25x
36) f(t) = tsin t+ cos t f0(t) = tcos t
37) f(x) = sin3tcos t f0(x) = sin2t(3 cos2tsin2t)
38) f(φ) = asin3φ
3f0(φ) = asin2φ
3cos φ
3
39) f(x) = acos 2x f0(x) =
asin 2x
cos 2x
40) f(x) = tan x
2+ cot x
2
xf0(x) =
2xcos x+ sin2xtan x
2+ cot x
2
x2sin2x
41) f(x) = a1cos2x
22
f0(x) = 2asin3x
2cos x
2
42) f(x) = 1
2tan2x f0(x) = tan xsec2x
43) f(x) = ln cos x f0(x) = tan x
44) f(x) = ln tan x f0(x) = 2
sin 2x
45) f(x) = ln sin2x f0(x) = 2 cot x
46) f(x) = tan x1
sec xf0(x) = sin x+ cos x
47) f(x) = ln r1 + sin x
1sin xf0(x) = 1
cos x
48) f(x) = sin ln x f0(x) = cos ln x
x
49) f(x) = sin cos x f0(x) = sin xcos(cos x)
50) f(x) = ln(ax +b)f0(x) = a
ax +b
51) f(x) = ln 1 + x
1xf0(x) = 2
1x2
52) f(x) = ln(x2
sin x)f0(x) = 2xcos x
x2sin x
53) f(x) = ln(x3
2x+ 5) f0(x) = 3x2
2
x32x+ 5
54) f(x) = xln(x)f0(x) = ln x+ 1
55) f(x) = ln3x f0(x) = 3 ln x
x
56) f(x) = ln(x+p1 + x2)f0(x) = 1
1 + x2
57) f(x) = ln ln x f0(x) = 1
xln x
58) f(x) = ln r1 + x
1xf0(x) = 1
1x2
59) f(x) = sin x
2 cos2xf0(x) = 1 + sin2x
2 cos3x
60) f(x) = eax f0(x) = aeax
61) f(x) = e4x+5 f0(x) = 4e4x+5
62) f(x) = aexf0(x) = a
2xex
63) f(x) = ex(1 x2)f0(x) = ex(1 2xx2)
64) f(x) = ex1
ex+ 1 f0(x) = 2ex
(ex+ 1)2
65) f(x) = ln ex
1 + exf0(x) = 1
1 + ex
66) f(x) = a
2(e
x
aex
a)f0(x) = 1
2(e
x
aex
a)
67) f(x) = esin xf0(x) = esin xcos x
68) f(x) = ecos xsin x f0(x) = ecos x(cos xsin2x)
69) f(x) = xnesin xf0(x) = xn1esin x(n+xcos x)
70) f(x) = arcsin x
af0(x) = 1
a2x2
71) f(x) = (arcsin x)2f0(x) = 2 arcsin x
1x2
72) f(x) = arctan 2x
1x2f0(x) = 2
1 + x2
73) f(x) = arccos(x2)f0(x) = 2x
1x4
74) f(x) = pa2x2+aarcsin x
af0(x) = rax
a+x
75) f(x) = xarcsin x f0(x) = arcsin x+x
1x2
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !